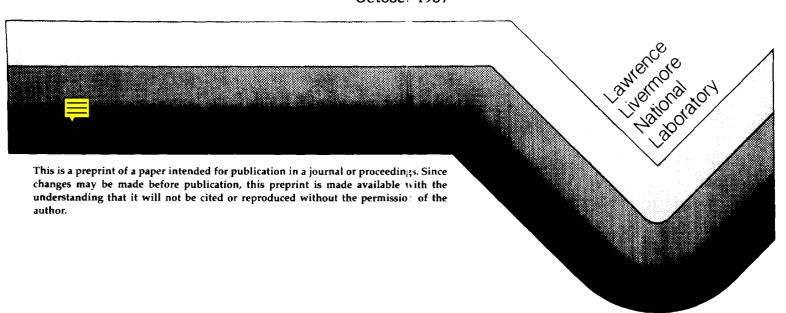
Symbolic Implicit Monte Carlo

Eugene D. Brooks III
University of California
Lawrence Livermore National Laboratory
Livermore, CA 94550

This paper was prepared for submittal to Journal of Computational Physics

October 1987



DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.

Symbolic Implicit Monte Carlo*

Eugene 1). Brooks III

University of California Lawrence Livermore National Laboratory Livermore, California 94550

ABS!!RACT

We introduce a new implicit Monte Carlo technique for solving time dependent

radiation transport problems involving spontaneous emission. In the usual implicit

Monte Carlo procedure, an effective scattering term is dictated by the requirement of

self-consistency between the transport and implicitly differenced atomic population equa-

tions. The effective scattering term, a source of inefficiency for optically thick problems,

becomes a serious difficulty for problems with gain. In our new technique the effective

scattering term does not occur. Elimination of the effective scattering term makes the

execution time for the Monte Carlo portion of the algorithm independent of opacity. We

compare the performance and accuracy of the new symbolic implicit Monte Carlo tech-

nique to the usual effective scattering technique for the time dependent description of

a two-level system in slab geometry.

This Paper Was Prepared For Submittal To

Journal of Computational Physics

Keywords: Symbolic, Implicit, Monte Carlo, Line Transport, Radiation Transport

October 1987

[&]quot;Work performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48.

Symbolic Implicit Monte Carlo

Eugene L' Brooks III

University of California

Lawrence Livermore National Laboratory

Livermore, California 94550

1. Introduction

The implicit Monte Carlo (IMC) technique for solving time dependent radiation transport was introduced in [1] for transport and material energy equations under LTE conditions, and was extended to the case of non-LTE line transport in [2]. In this technique, the formal solution of the material energy or atomic population equations is substituted into the spontaneous emission term of the transport equation to obtain a consistent set of coupled equations. This leads to an effective scattering term in the resulting transport equation. For optically thick media the effective scattering term dominates the Monte Carlo solution of the transport equation, causing the execution time to diverge as the optical thickness of the media is increased. Although the IMC technique is robust for problems of high opacity, its application to them is limited in practice due to the large amount of computer time consumed by the effective scattering process.

For line transport problems, where it is physically possible to have gain in the line, the situation can be worse than a simple loss of efficiency. When the problem crosses into the gain regime the effective scattering coefficient becomes negative. This can be handled, in principle, by introducing negative weight photon bundles. The distance to a scattering event is computed using the absolute value of the scattering coefficient, but just what happens at the scattering event is dependent upon the sign of the coefficient. If the sign is positive a normal scattering event occurs. If the sign is negative the weight of the incident bundle is doubled and a new bundle, with a negative weight equal in magnitude to the weight of the incident bundle, is generated to travel in the scattered direction. Using negative weight bundles achieves poor statistical accuracy due to the subtractions occurring in the photon distribution. In addition to the poor statistical accuracy caused by subtractions, the *net* photon weight in a zone is no longer guaranteed to be positive. Such fluctuations can occur quite frequently in practice unless excessively large sample sizes are used for the photon distribution.

A new Monte Carlo technique, which would remove the effective scattering term from the Monte Carlo solution of the transport equation while maintaining the same level of robustness inherent in IMC, would be a significant advance in the use of Monte Carlo to solve time dependent transport problems. With

the effective scattering term gone, the computer time required for the Monte Carlo portion of the algorithm should be independent of optical thickness. The new technique would extend the practical application of Monte Carlo to very thick problems where IMC is currently a robust, but inefficient method to solve time dependent transport problems. This is not the first attempt to improve the efficiency of implicit Monte Carlo for optically thick problems. A random walk procedure [3], which can be used for problems in LTE, has been developed. Random walk is an approximation to the real solution of the transport equation that offers a limited performance increase over the standard MC technique. We consider here a new implicit Monte Carlo technique, called symbolic implicit Monte Carlo (SIMC) for reasons explained below, which does not require any approximations in the solution of the transport equation to improve efficiency for optically thick problems. Our new technique is faster than IMC for optically thin systems as long as the Monte Carlo portion of the algorithm dominates the computation time. For optically thick systems the new technique maintains a computation time that is essentially independent of opacity.

The key to the new method is in realizing that it is possible to track photon bundles and record their histories without knowing their weights. In the Monte Carlo used to provide an estimate of the radiation field all decisions regarding the disposition of a photon bundle are independent of its weight, allowing us to track bundles with unknown weights. The spontaneous emission term in the transport equation can be treated implicitly, with respect to the atomic populations, by emitting bundles with unknown or *symbolic* weights that depend on the forward differenced atomic populations. Once the time histories of the bundles are known the now spatially coupled equations governing the atomic populations may be solved. With the atomic populations computed the numeric weights of the symbolic photon bundles can be assigned. The process is repeated for each time step resulting in a robust time dependent solution of the coupled transport and atomic population equations.

The resulting computational method is as robus and accurate as the standard IMC technique and offers a startling speed improvement for optically thick problems. As the new algorithm does not have any effective scattering it opens up the possibility of treating problems involving gain. For problems without gain we have found the SIMC technique, like the traditional IMC technique, to be unconditionally stable in practice. In the case of problems with gain we have found, again through practical numerical calculations, that one must limit the time step size to control instabilities generated by the stimulated emission term. The reasons for apparent stability in problems without gain and conditional stability for problems with gain are not clearly understood and remain an open issue.

In this paper we will consider the application of the SIMC technique to a two-level line transport problem in slab geometry. The problem being considered is the same one considered in [2] and we

compare both the accuracy and speed of the new algorithm with the results of the previous paper. In Section 2 we discuss the problem to be solved and the differencing scheme used in the numerical solution of the equation governing the atomic populations. This is essentially the same as in [2], except that the formal solution of the atomic populations is not substituted into the transport equation to generate an effective scattering term. In Section 3 we describe the SIMC technique, the heart of which is the tracking of photon bundles with symbolic weights. The linear system that must be solved to obtain the atomic population fractions is also discussed in this section. In Section 4 we consider a simple line trapping problem. We show that SIMC and IMC deliver the equivalent results for sufficiently small time step sizes, and that SIMC has slightly less overshoot for large time step sizes. In Section 5 we consider the execution speeds of both IMC and SIMC as the optical thickness of the problem is increased. As the opacity is increased, the execution time for the IMC diverges while the execution time for SIMC remains essentially constant.

2. The mathematical method

As a test bed for the symbolic IMC technique consider a two-level system including collisional, or external, pumping between the atomic levels. We will consider the system in one dimensional slab geometry. No further complications arise in higher dimensions except that the number of zones, and therefore the size of the linear system which occurs in SIMC, can increase rapidly. The transport equation for such a system in slab geometry is

$$\frac{\partial f}{\partial t} + \mu c \frac{\partial f}{\partial x} = \frac{n_2}{2} A_{21} \phi - c (K_{12} n_1 - K_{21} n_2) \phi f \quad , \tag{2.1}$$

where c is the speed of light, x is the position in the cylinder, μ is the direction cosine of the radiation, ν is the frequency of the radiation, $f(\mu,\nu,x,t)$ is the photon number density distribution per unit atom density, $n_2(x,t)$ is the upper level atomic population fraction, $i_1(x,t)$ is the lower level atomic population fraction, A_{21} is the spontaneous emission rate, $\phi(\nu)$ is the line shape function normalized to unit integral and $K_{12}=\kappa N$, where κ is the lower state absorption cross section and N is the atom number density. The coefficient K_{21} is defined by

$$K_{21} = \frac{g_1}{g_2} K_{12} \quad , \tag{2.2}$$

where g_1 and g_2 are the usual statistical weight factors for levels 1 and 2. As in [2], we consider the problem in the regime of complete redistribution and no physical scattering of photons. The accommodation of a physical scattering term is trivial, the generalization to partial redistribution and multi-line problems, for which the SIMC technique is essential, will be dealt within a future paper. The equations governing the atomic population fractions n_1 and n_2 are

$$\frac{dn_2}{dt} = C_{12}n_1 - C_{21}n_2 - A_{21}n_2 + c(K_{12}n_1 - K_{21}n_2) \int_{-1}^{1} d\mu \int_{0}^{\infty} d\nu \phi(\nu) f(\mu, \nu)$$
 (2.3)

and

$$n_1 + n_2 = \dots,$$
 (2.4)

where C_{12} and C_{21} are rate constants for the collisional transitions $1 \to 2$ and $2 \to 1$, respectively. One must add to the above equations suitable boundary and initial conditions, for instance a specification of the inwardly directed f on the left and right edges of the finite slab of thickness l in which our problem is defined and the values of f and the atomic population fractions inside the slab at time l = 0.

Using (2.4) one can rewrite (2.1) and (2.3) as

$$\frac{\partial f}{\partial t} + c\mu \frac{\partial f}{\partial x} = \frac{n}{2} A_{21} \phi - c \left[K_{12} - (K_{21} + K_{12}) n \right] \phi f \tag{2.5}$$

and

$$\frac{dn}{dt} = C_{12} - (C_{12} + C_{21} + A_{21})n + c[K_{12} - (K_{21} + K_{12})n] \int_{-1}^{1} d\mu \int_{0}^{\infty} d\nu \phi(\nu) f(\mu, \nu) , \qquad (2.6)$$

respectively, where n is the upper level population fraction.

The scheme for generating a finite difference solution to (2.6) is the same one used in the standard IMC technique [2]. We integrate (2.6) from t_0 to $t_0 + i t t$, approximating n(t) by $n(t_0 + \Delta t)$ in the spontaneous emission and collision terms and by $n(t_0)$ in the absorption term, obtaining

$$n(t_0 + \Delta t) = n(t_0) + \left[C_{12} - (C_{12} + C_{21} + A_{11})n(t_0 + \Delta t)\right] \Delta t$$

$$+ c\left[K_{12} - (K_{21} + K_{12})n(t_0)\right] \int_{t_0}^{t_1 + \Delta t} dt \int_{-1}^{1} d\mu \int_{0}^{\infty} d\nu \phi(\nu) f(\mu, \nu, t) .$$
(2.7)

The reader will note that up to this point we have not done anything different than what was done in [2] to generate a prescription to compute $n(t_0 + \Delta t)$ given $n(t_0)$ and the time integral of the photon distribution over the time interval from t_0 to $t_0 + \Delta t$. It is at this point that we do something radically different.

3. The symbolic implicit Monte Carlo technique

In order to use the prescription (2.7) to advance the atomic populations one time step we need the time integral of the photon distribution from t_0 to $t_0 + \Delta t$ specified in the last term of (2.7). To be consistent with (2.7) in the treatment of the spontaneous emission, our solution of (2.5) needs to use the forward

differenced atomic population fraction $n(t_0 + \Delta t)$ as we integrate (2.5) across the time step. In the standard IMC technique, we substitute the formal solution for $n(t_0 + \Delta t)$ into the spontaneous emission term of (2.5) and note that the resulting transport equation now contains an effective scattering term that can be dealt with via Monte Carlo. The Monte Carlo is run and the time integral of the photon distribution is used to compute $n(t_0 + \Delta t)$. The problem with this approach is that the effective scattering term dominates the Monte Carlo for optically thick problems, providing rather long execution times.

We would like to use Monte Carlo to provide a statistical estimate of the photon distribution without introducing an effective scattering term. At first sight, it seems impossible to create a Monte Carlo estimate for the integral of (2.5) without having $n(t_0 + \Delta t)$ in hand to assign weights to the spontaneously emitted photon bundles. However, this is easily accomplished once one notices that the decisions made in creating the time histories of the photon bundles do not depend on their weights. As a result, it is possible to emit and track photon bundles with *symbolic* weights, weights that depend on the forward differenced atomic population fractions that have not yet been determined. By tracking the symbolic photon bundles, one creates a Monte Carlo estimate of the integral of the photon field which depends on the unknown forward differenced atomic population fractions. This estimate can now be used to solve (2.7) and results in a linear system in the atomic population fractions. The linear system can be solved, and the atomic population fractions $n(t_0 + \Delta t)$ can then be used to establish numeric values for the symbolic photon bundles.

To implement the symbolic IMC algorithm for our test problem, a slab of thickness l, we divide the region up into nzones zones of equal thickness. The atomic population fractions are assumed to be constant, as a function of x, within each zone. The first step of the algorithm is to create the statistical estimate of the photon distribution f. There are three sources of photon bundles: the census bundles from the previous time step, any bundles generated at the boundary due to boundary conditions and any bundles that are spontaneously emitted within a zone during the time step. The procedure for generating the frequency distributions of emitted bundles and tracking them is the same as in [2], except for the lack of effective scattering, so we will not describe it here. The difference with the procedure in [2] is that the spontaneously emitted bundles now have a symbolic weight, which are proportional to the unknown forward differenced atomic population fraction $n(t_0 + \Delta t)$ in the zone from which they were emitted. The symbolic weight is adjusted in flight just as the numeric weights of the census and boundary bundles are, but the scoring of a bundle with a symbolic weight is handled differently. When a bundle with a numeric weight makes a track in a zone, the time integral of the weight of the bundle is added to a single memory location associated with the zone. When a bundle with a symbolic weight, which was spontaneously emitted in zone i, makes a track in zone i, the i'th element of an array associated with zone i is incremented with the

time integral of the symbolic weight of the bundle. To get the time integral of $\int_{-1}^{1} d\mu \int_{0}^{\infty} d\nu \phi(\nu) f(\mu,\nu)$ within a zone, one must add the numeric value, which comes from tracking census and boundary bundles, to the sum of symbolic values from spontaneously emitted bundles after they have been scaled by the forward differenced atomic atomic population fractions of their birth zones. The prescription (2.7) for the atomic population fraction update becomes

$$n(t_0 + \Delta t)_i = n(t_0)_i + [C_{12} + (C_{12} + C_{21} + A_{11})n(t_0 + \Delta t)_i]\Delta t$$

$$+ c[K_{12} - (K_{21} + K_{12})n(t_0)_i][i^{7}N_i + \sum_{j} FS_{ij}n(t_0 + \Delta t)_j]/V_i$$
(3.1)

where FN_i is the contribution to

$$\int dx \int_{t_0}^{t_0 + \Delta t} dt \int_{-1}^{1} d\mu \int_{0}^{\infty} d \cdot \phi(v) f(\mu, x, v, t)$$
(3.2)

within zone *i* coming from bundles with numeric weights, $FS_{ij}n(t_0 + \Delta t)_j$ is the contribution to the integral within zone *i* coming from bundles with symbolic weights that were born in zone *j*, $n(t_0)_i$ is the upper level atomic population fraction in zone *i* at the start of the time step, $n(t_0 + \Delta t)_i$ is the upper level atomic population fraction in zone *i* at the end of the time step, and v_i is the thickness of zone *i*.

Equation (3.1) specifies a linear system to be solved for the $n(t_0 + \Delta t)$. The linear system is dense if the time step Δt is large enough to allow spontaneously emitted bundles from one zone to cross all the others. The solution of a linear system via Gauss elimination, for example, takes a time that grows like the cube of the dimension of the system, in this case the number of zones. For problems involving a large linear system, which might occur in higher dimensions or multi-line contexts, we will need to use a technique for the linear system solve with better scaling properties. Fortunately, in practice the matrix is strongly diagonally dominant and simple Jacobi iteration [4], using the atomic population fractions from the previous time step as a starting guess, does quite well with very few iterations required to obtain high accuracy solutions. Jacobi iteration gives a time for solution that scales like the number of zones squared and takes advantage of a good initial starting guess for the solution, the atomic population fractions from the previous time step. If the time step size is such that a symbolic bundle can not cross too many zones during the time step, the linear system will be sparse and an iterative technique will be even more attractive.

In practice, the time to solve the linear system is small compared to the time for the Monte Carlo and we have not had to be very sophisticated with the linear system solver. For problems with 15000 census bundles and up to 500 zones the linear system solve has remained a small portion of the total computation

time even though Gauss elimination is being used. This is particularly true on a supercomputer where the linear system solve is efficiently vectorized and the Monte Carlo is not. If we require the solution of problems with many thousands of zones we will clearly have to be more sophisticated with the linear system solve. Careful exploitation of sparseness and iterative techniques will make problems with large numbers of zones quite tractable.

4. Accuracy

We have performed numerous runs with high statistics comparing the standard IMC technique [2] to the symbolic IMC technique introduced here. For reasonable time step sizes, which are small when compared to the characteristic times scales occurring in a problem, IMC and SIMC provide the same time dependent results. The two techniques have been cruically compared for a variety of problem parameters and no differences, other than slightly different overshoot characteristics for large time step sizes, have been found.

As noted above, IMC and SIMC exhibit slightly different overshoot characteristics for large time step sizes. This is caused by the extra approximation which is made when deriving the effective scattering term of IMC. This approximation, discussed in Section 2 of [2], does not have to be made in SIMC where there is no effective scattering term. To illustrate this difference for large time step sizes, we show in Figure 1 the slab optical thickness as a function of time for both techniques in a simple line trapping problem. The physical problem parameters for these calculations are given in Table 1. The slab was divided into 32 zones of equal size, the length units are chosen so that the slab has unit length and the time units are chosen so that the light travel time across the slab is unity. For a time step size of 0.1 both IMC and SIMC give equivalent results as is clear in the figure. For a time step size of 1.0, which is quite large in comparison with the characteristic time scales in the problem, the SIMC technique has less overshoot than IMC but both SIMC and IMC give the same steady state solution.

n(x,t=0)	0.25	
$f(\mu, v, x, t=0)$	0	
$f(\mu > 0, v, x = 0, t)$	0	
$f(\mu < 0, v, x = 1, t)$	0	
K ₂₁	15.3422	
<i>K</i> ₁₂	15.3422	
A_{21}	3.33564	
C_{12}	0.245423	
C_{21}	0.667128	

Table | Physical problem parameters for Figure 1.

5. Algorithm performance

We consider in this section how the execution times for IMC and SIMC compare as we vary the optical thickness of a problem. To do this we take the problem configuration of Section 4 and vary the optical thickness of the slab by choosing one of the values .1, .1, .10, .100, or .1000 for the coefficients .100 and .100 for the coefficients .100 and .100 for the execution time versus the resulting equilibrium slab optical thickness, for the problem evolved to .100 using a time step size of .100. For an optically thin problem the SIMC algorithm is about 30% faster than the IMC algorithm (provided the Monte Carlo dominates execution time as is the case here). This is caused by the simpler Monte Carlo of SIMC which contains no effective scattering terms, thereby removing the work of computing the distance to next collision. As the opacity of the problem is increased the divergence of execution time for .100 is clear while the SIMC algorithm maintains a virtually constant execution time. This striking improvement in the execution time, while maintaining the same level of robustness, makes SIMC extremely desirable for optically thick problems.

In Table 2 we show the execution times for SIMC on a sample problem, 20 time steps of the problem of Section 4, as the number of zones is changed. The timings in the column labeled scalar are execution times in seconds for a 16 mhz Intel 80386 based system with a Weitek 1167 floating point accelerator. The timings in the column labeled vector are execution times in seconds for a Cray XMP 4/16 using the LLNL C/Civic hybrid compiler. The numbers in parenthese; are the ratios of execution times above and below the respective entry. The linear system solve is efficiently vectorized on the Cray machine, reducing its relative costs as compared to the Monte Carlo by about a factor of 10. The same source program, coded in C, was used on both machines and the identical numerical results were obtained. Unfortunately, the 1024 zone problem could not be run on the Cray machine due to its 8 million word memory limitation, enforced

by the operating system.

Note that as the number of zones is doubled, the ratio of execution times is less than 2 for small numbers of zones. On the scalar machine the ratio of execution times rises to 3.17 as we double from 256 to 512 zones, and increases to 5.25 as we double from 512 to 1024 zones. On the vector machine the ratio remains less than 2. The ratio of less slightly less than 2 for small numbers of zones results when the Monte Carlo dominates execution time. As the zone width is halved the number of tracks made by a bundle for a large time step size is doubled. When the execution time is dominated by the linear system solve the use of Gauss elimination results in a ratio of 8 in the execution times as the number of zones is doubled. The ratio of execution times as we double the number of zones from 512 to 1024, running on the scalar machine, indicates that the linear system solve is beginning to dominate the execution time. This is confirmed by an execution profile that indicated that 60% of the time was spent in the linear system solve. For the vector machine the ratio of execution times, as we double the number of zones, remains below 2 in this table. The point at which the linear system solve dominates the total execution time is postponed to a larger number of zones by the efficient vectorization of the linear system solve.

nzones	scalar	vector
32	266.3	17.21
	(1.75)	(1.68)
64	464.	28.89
}	(1.₹ 9)	(1.80)
128	924.7	52.12
ĺ	(2.47)	(1.91)
256	2283.7	99.48
}	(3.17)	(1.98)
512	7240.3	197.26
1	(5.25)	
1024	38005.2	na

Table 2

Execution times for a sample problem as the number of zones is increased.

6. Discussion

We have developed a new technique, symbolic implicit Monte Carlo (SIMC), for the solution of radiation transport problems involving spontaneous emission. The new technique preserves the robustness of traditional implicit Monte Carlo (IMC) while removing the effective scattering term which is a source of inefficiency for optically thick problems. We have demonstrated that the symbolic technique delivers the same results as traditional IMC, with slightly less overshoot for large time step sizes in a time dependent problem, and provides the same level of robustness.

The SIMC technique is slightly faster than the IMC technique for optically thin problems and provides an execution time which is independent of opacity. This is a startling speed improvement for optically thick problems. In the symbolic technique we have traded the effective scattering term of the IMC technique for a linear system solve to obtain the atomic population fractions at the forward time. A linear system solve can consume a great deal of computer time for a large number of zones. As problem sizes grow, sophisticated techniques will have to be exploited to minimize the time spent in the linear system solver. We have shown that problems with up to 1000 zones can be addressed, using Gauss elimination which would be the worse case linear system solver, before one needs to worry about the performance of the linear system solve.

This paper is intended only as a vehicle to introduce the SIMC technique and concerns itself with a very simple line transport application. The idea of using symbolic weights in a time dependent Monte Carlo can almost certainly be applied to the LTE transport problem of [1]. The linear system solve of the line transport case becomes a non-linear problem in the LTE case due to the T^4 dependence of spontaneous emission on the material temperature T. The SIMC technique was developed to provide a technique which could be easily generalized to multiple line problems, including gain. We will publish the generalization of SIMC to the multiple line problems in a future work.

Symbolic implicit Monte Carlo technique will likely play an important role in time dependent NLTE and LTE transport calculations. Banishing the effective scattering term provides a startling speed increase on problems with high opacities and opens up the possibility of treating problems with multiple lines, including gain. The idea of using Monte Carlo particles with symbolic weights, with their numerical values to be determined after the track histories are recorded, may prove to be a valuable asset to other Monte Carlo applications as well.

Acknowledgments

The author wishes to thank Joe Fleck who introduced me to the IMC concept through collaborative efforts on an earlier work. This work stands on his shoulders. The author also wishes to thank George Zimmerman for giving the freedom to try out all the ideas that failed and the constant encouragement to find one that succeeded.

References

- [1] J. A. Fleck, Jr. and J. D. Cummings, J. Comput Phys. 8, 313 (1971).
- [2] E. D. Brooks III and J. A. Fleck, Jr., J. Comput. Phys. 67, 59 (1986).
- [3] J. A. Fleck, Jr. and E. H. Canfield, J. Comput. Fixs. 54, 508 (1984).
- [4] A. Jennings, Matrix Computation for Engineers and Scientists, John Wiley & sons, 182 (1977).

Figures

- [1] Slab optical thickness as a function of time for different values of the integration time-step Δt , for both IMC and SIMC.
- [2] Execution time for IMC and SIMC as the optical thickness of the slab is increased.

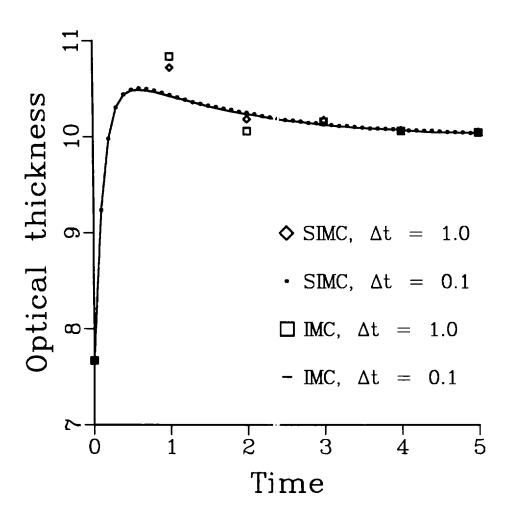


Figure 1

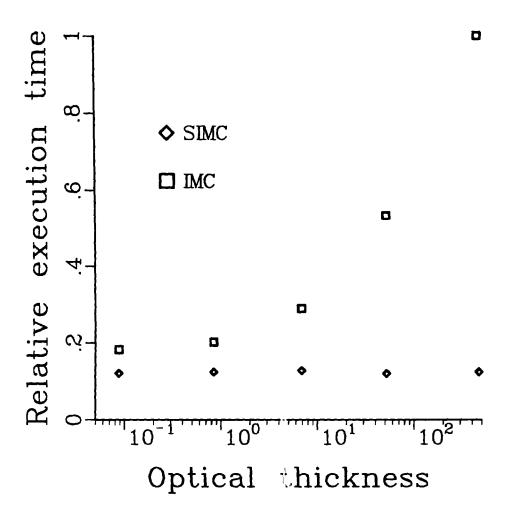


Figure 2