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We introduce a new implicit Monte Carlo technique for solving time dependent
radiation transport problems involving spontaneous emission. In the usual implicit
Monte Carlo procedure, an effective scattering term is dictated by the requirement of
self-consistency between the transport and inplicitly differenced atomic population equa-
tions. The effective scattering term, a sourc: of inefficiency for optically thick problems,
becomes a serious difficulty for problems with gain. In our new technique the effective
scattering term does not occur. Elimination of the effective scattering term makes the
execution time for the Monte Carlo portion «f the algorithm independent of opacity. We
compare the performance and accuracy of the new symbolic implicit Monte Carlo tech-
nique to the usual effective scattering technicque for the the time dependent description of
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1. Introduction

The implicit Monte Carlo (IMC) technique for solving time dependent radiation transport was intro-
duced in [1] for ransport and material energy equaions under LTE conditions, and was extended to the
case of non-LTE line transport in [2]. In this techarique, the formal solution of the material energy or
atomic population equations is substituted into the spontaneous emission term of the transport equation to
obtain a consistent set of coupled equations. This leads to an effective scattering term in the resulting tran-
sport equation. For optically thick media the effectiv: scattering term dominates the Monte Carlo solution
of the transport equation, causing the execution time to diverge as the optical thickness of the media is
increased. Although the IMC technique is robust for problems of high opacity, its application to them is

limited in practice due to the large amount of computer time consumed by the effective scattering process.

For line transport problems, where it is physica:iy possible to have gain in the line, the situation can
be worse than a simple loss of efficiency. When the problem crosses into the gain regime the effective
scattering coefficient becomes negative. This can be handled, in principle, by introducing negative weight
photon bundles. The distance to a scattering event is :omputed using the absolute value of the scattering
coefficient, but just what happens at the scattering event is dependent upon the sign of the coefficient. If
the sign is positive a normal scattering event occurs. If the sign is negative the weight of the incident bun-
dle is doubled and a new bundle, with a negative weight equal in magnitude to the weight of the incident
bundle, is generated to travel in the scattered direction. Using negative weight bundles achieves poor sta-
tistical accuracy due to the subtractions occurring in the: photon distribution. In addition to the poor statisti-
cal accuracy caused by subtractions, the net photon weight in a zone is no longer guaranteed to be positive.
Such fluctuations can occur quite frequently in practice: unless excessively large sample sizes are used for
the photon distribution.

A new Monte Carlo technique, which would rerniove the effective scattering term from the Monte

Carlo solution of the transport equation while maintairing the same level of robustness inherent in IMC,

would be a significant advance in the use of Monte Carlo to solve time dependent transport problems. With
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the effective scattering term gone, the computer time req. ired for the Monte Carlo portion of the algorithm
should be independent of optical thickness. The new te:hnique would extend the practical application of
Monte Carlo to very thick problems where IMC is currently a robust, but inefficient method to solve time
dependent transport problems. This is not the first atte mpt to improve the efficiency of implicit Monte
Carlo for optically thick problems. A random walk proc:dure [3], which can be used for problems in LTE,
has been developed. Random walk is an approximatior to the real solution of the transport equation that
offers a limited performance increase over the standard "MC technique. We consider here a new implicit
Monte Carlo technique, called symbolic implicit Monte (Zarlo (SIMC) for reasons explained below, which
does not require any approximations in the solution of the: transport equation to improve efficiency for opti-
cally thick problems. Our new technique is faster than [MC for optically thin systems as long as the Monte
Carlo portion of the algorithm dominates the computati-:n time. For optically thick systems the new tech-

nique maintains a computation time that is essentially injependent of opacity.

The key to the new method is in realizing that it i;; possible to track photon bundles and record their
histories without knowing their weights. In the Monte Carlo used to provide an estimate of the radiation
field all decisions regarding the disposition of a photon 'vundle are independent of its weight, allowing us to
track bundles with unknown weights. The spontaneois emission term in the transport equation can be
treated implicitly, with respect to the atomic populatio:s, by emitting bundles with unknown or symbolic
weights that depend on the forward differenced atomic populations. Once the time histories of the bundles
are known the now spatially coupled equations governing the atomic populations may be solved. With the
atomic populations computed the numeric weights of :1e symbolic photon bundles can be assigned. The
process is repeated for each time step resulting in a robust time dependent solution of the coupled transport

and atomic population equations.

The resulting computational method is as robus and accurate as the standard IMC technique and
offers a startling speed improvement for optically thick problems. As the new algorithm does not have any
effective scattering it opens up the possibility of treat ng problems involving gain. For problems without
gain we have found the SIMC technique, like the tradiiional IMC technique, to be unconditionally stable in
practice. In the case of problems with gain we have foind, again through practical numerical calculations,
that one must limit the time step size to control instabilities generated by the stimulated emission term. The
reasons for apparent stability in problems without gair and conditional stability for problems with gain are

not clearly understood and remain an open issue.

In this paper we will consider the application of the SIMC technique to a two-level line transport

problem in slab geometry. The problem being con:idered is the same one considered in [2] and we
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compare both the accuracy and speed of the new algorithm with the results of the previous paper. In Sec-
tion 2 we discuss the problem to be solved and the differencing scheme used in the numerical solution of
the equation governing the atomic populations. This is essentially the same as in [2], except that the formal
solution of the atomic populations is not substituted into the transport equation to generate &n effective
scattering term. In Section 3 we describe the SIMC technique, the heart of which is the tracking of photon
bundles with symbolic weights. The linear system that must be solved to obtain the atomic population frac-
tions is also discussed in this section. In Section 4 ~e consider a simple line trapping problem. We show
that SIMC and IMC deliver the equivalent results for sufficiently small time step sizes, and that SIMC has
slightly less overshoot for large time step sizes. In Section 5 we consider the execution speeds of both IMC
and SIMC as the optical thickness of the problem is increased. As the opacity is increased, the execution

time for the IMC diverges while the execution time f.-r SIMC remains essentially constant.

2. The mathematical method

As a test bed for the symbolic IMC technique. consider a two-level system including collisional, or
external, pumping between the atomic levels. We will consider the system in one dimensional slab
geometry. No further complications arise in higher dimensions except that the number of zones, and there-
fore the size of the linear system which occurs in SIMC, can increase rapidly. The transport equation for
such a system in slab geometry is

n
Lo well =20 etk ~ Knof @1

where c is the speed of light, x is the position in the cylinder, | is the direction cosine of the radiation, v is
the frequency of the radiation, f(j,v,x,r) is the photon number density distribution per unit atom density,
ny(x,t) is the upper level atomic population fraction, - (x,s) is the lower level atomic population fraction,
A,, is the spontaneous emission rate, ¢(v) is the line shiipe function normalized to unit integral and K,,=xN,
where x is the lower state absorption cross section and .V is the atom number density. The coefficient X, is

defined by

81,
Kn=—%; , 2.2)
82
where g, and g, are the usual statistical weight factors 1'or levels 1 and 2. As in [2], we consider the prob-
lem in the regime of complete redistribution and no physical scattering of photons. The accommodation of
a physical scattering term is trivial, the generalization (o partial redistribution and multi-line problems, for

which the SIMC technique is essential, will be dealt wit- in a future paper.
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The equations govemning the atomic population fr:«:tions »; and n, are

1 oo
dTn:' = Clz"’l - Czlnz —Azlnz + C(KU”l - K21’l2) Idujo dV¢(V)f(u,V) (2-3)
-1

and

ni+ny=. , (24)

where C;, and C,; are rate constants for the collisional transitions 1 — 2 and 2 — 1, respectively. One
must add to the above equations suitable boundary and iaitial conditions, for instance a specification of the
inwardly directed f on the left and right edges of the finite slab of thickness ! in which our problem is

defined and the values of f and the atomic population frictions inside the slab at time ¢ = 0.

Using (2.4) one can rewrite (2.1) and (2.3) as

%IL + ‘-‘ll‘g'g = %Azx‘b = cl {13 — Ky + Kipnlof 2.5
and
dn toe
_dT = CIZ - (CIZ + C21 +A21)n + C[Ku - ‘KZI + Ku)n] J.dl.lj'o dV¢(V)f(u,,V) Py (26)
]

respectively, where n is the upper level population fract.>n.

The scheme for generating a finite difference so:ation to (2.6) is the same one used in the standard
IMC technique [2]. We integrate (2.6) from 1, to fy + &1, approximating n(t) by n(ty + Ar) in the spontane-

ous emission and collision terms and by ~(f;) in the absorption term, obtaining

n(to + At) = n(to) + [Clz - (C12 + C21 + A:-‘ | )n(to + A‘)]A: (2.7)
1A 1 =
+elKia~ K+ Kidno)l || e[ dnf avevifuv)
< -1

The reader will note that up to this point we have not done anything different than what was done in
(2] to generate a prescription to compute n(ty + Af) givn n(ty) and the time integral of the photon distribu-

tion over the time interval from 4, to £+ Az. It s at this point that we do something radically different.

3. The symbolic implicit Monte Carlo technique

In order to use the prescription (2.7) to advance the atomic populations one time step we need the
time integral of the photon distribution from ¢, to ¢, + At specified in the last term of (2.7). To be consistent

with (2.7) in the treatment of the spontaneous emissi-n, our solution of (2.5) needs to use the forward



differenced atomic population fraction n(f, + Ar) as we integrate (2.5) across the time step. In the standard
IMC technique, we substitute the formal solution for n(y + Ar) into the spontaneous emission term of (2.5)
and note that the resulting transport equation now contains an effective scattering term that can be dealt
with via Monte Carlo. The Monte Carlo is run and the time integral of the photon distribution is used to
compute n(fy + Ar). The problem with this approach is that the effective scattering term dominates the

Monte Carlo for optically thick problems, providing 1ather long execution times.

We would like to use Monte Carlo to provide . statistical estimate of the photon distribution without
introducing an effective scattering term. At first sighs, it seems impossible to create a Monte Carlo estimate
for the integral of (2.5) without having n(f, + Af) in nand to assign weights to the spontaneously emitted
photon bundles. However, this is easily accomplishe:: once one notices that the decisions made in creating
the time histories of the photon bundles do not depend on their weights. As a result, it is possible to emit
and track photon bundles with symbolic weights, weights that depend on the forward differenced atomic
population fractions that have not yet been determined. By tracking the symbolic photon bundies, one
creates a Monte Carlo estimate of the integral of the photon field which depends on the unknown forward
differenced atomic population fractions. This estimate can now be used to solve (2.7) and results in a
linear system in the atomic population fractions. The linear system can be solved, and the atomic popula-

tion fractions n(fy + Af) can then be used to establish n:meric values for the symbolic photon bundles.

To implement the symbolic IMC algorithm for our test problem, a slab of thickness /, we divide the
region up into nzones zones of equal thickness. The atomic population fractions are assumed to be con-
stant, as a function of x, within each zone. The first step of the algorithm is to create the statistical estimate
of the photon distribution f. There are three sources of photon bundles: the census bundles from the previ-
ous time step, any bundles generated at the boundary ue to boundary conditions and any bundles that are
spontaneously emitted within a zone during the time st2p. The procedure for generating the frequency dis-
tributions of emitted bundles and tracking them is tt:: same as in [2], except for the lack of effective
scattering, so we will not describe it here. The difference with the procedure in [2] is that the spontane-
ously emitted bundles now have a symbolic weight, which are proportional to the unknown forward differ-
enced atomic population fraction n(f+ Af) in the zose from which they were emitted. The symbolic
weight is adjusted in flight just as the numeric weights of the census and boundary bundles are, but the
scoring of a bundle with a symbolic weight is handled differently. When a bundle with a numeric weight
makes a track in a zone, the time integral of the weight of the bundle is added to a single memory location
associated with the zone. When a bundle with a symbolic weight, which was spontaneously emitted in

zone i, makes a track in zone j, the #’th element of an array associated with zone j is incremented with the
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l L]
time integral of the symbolic weight of the bundle. To g:t the time integral of |djt] dvé(v)f(iL,v) within a
g 0
21

zone, one must add the numeric value, which comes fiom tracking census and boundary bundles, to the
sum of symbolic values from spontaneously emitted bundles after they have been scaled by the forward
differenced atomic atomic population fractions of their birth zones. The prescription (2.7) for the atomic

population fraction update becomes
’l(fo + Al)‘- = n(lo)‘- + [Cu - (CIZ + C21 + A '1'1)’!(1'0 + At)l- ]At (31)

+ C[KIZ - (K21 + Klz)’l(‘o)"][leri + EF'SU’I(IO + AI)I]/Vl
j

where FN; is the contribution to

t + At i oo
jde' Ad:jdpjo &, dV)f(x,v,0) (3.2)
o -1

within zone i coming from bundles with numeric weigt's, FS;;n(, + At); is the contribution to the integral
within zone i coming from bundles with symbolic weig1ts that were born in zone j, n(t); is the upper level
atomic population fraction in zone i at the start of the tine step, n(f, + At); is the upper level atomic popu-

lation fraction in zone i at the end of the time step, and - is the thickness of zone i.

Equation (3.1) specifies a linear system to be soled for the n(ty + Ar);. The linear system is dense if
the time step At is large enough to allow spontaneously emitted bundles from one zone to cross all the oth-
ers. The solution of a linear system via Gauss eliminition, for example, takes a time that grows like the
cube of the dimension of the system, in this case the number of zones. For problems involving a large
linear system, which might occur in higher dimension: or multi-line contexts, we will need to use a tech-
nique for the linear system solve with better scaling properties. Fortunately, in practice the matrix is
strongly diagonally dominant and simple Jacobi iteration [4], using the atomic population fractions from
the previous time sltep as a starting guess, does quite v/2ll with very few iterations required to obtain high
accuracy solutions. Jacobi iteration gives a time for solution that scales like the number of zones squared
and takes advantage of a good initial starting guess fci the solution, the atomic population fractions from
the previous time step. If the time step size is such tt it a symbolic bundle can not cross too many zones
during the time step, the linear system will be sparse :nd an iterative technique will be even more attrac-
tive.

In practice, the time to solve the linear system is small compared to the time for the Monte Carlo and
we have not had to be very sophisticated with the lin:ar system solver. For problems with 15000 census

bundles and up to 500 zones the linear system solve h:s remained a small portion of the total computation
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time even though Gauss elimination is being used. This is particularly true on a supercomputer where the
linear system solve is efficiently vectorized and the Monte Carlo is not. If we require the solution of prob-
lems with many thousands of zones we will clearly have to be more sophisticated with the linear system
solve. Careful exploitation of sparseness and iterative techniques will make problems with large numbers

of zones quite tractable.

4. Accuracy

We have performed numerous runs with high :itatistics comparing the standard IMC technique [2] to
the symbolic IMC technique introduced here. For reasonable time step sizes, which are small when com-
pared to the characteristic times scales occurring in a problem, IMC and SIMC provide the same time
dependent results. The two techniques have been cr rically compared for a variety of problem parameters
and no differences, other than slightly different overshoot characteristics for large time step sizes, have
been found.

As noted above, IMC and SIMC exhibit slightly different overshoot characteristics for large time
step sizes. This is caused by the extra approximation which is made when deriving the effective scattering
term of IMC. This approximation, discussed in Section 2 of [2], does not have to be made in SIMC where
there is no effective scattering term. To illustrate this difference for large time step sizes, we show in Fig-
ure 1 the slab optical thickness as a function of time fixr both techniques in a simple line trapping problem.
The physical problem parameters for these calculation: are given in Table 1. The slab was divided into 32
zones of equal size, the length units are chosen so that the slab has unit length and the time units are chosen
so that the light ravel time across the slab is unity. Fur a time step size of 0.1 both IMC and SIMC give
equivalent results as is clear in the figure. For a time step size of 1.0, which is quite large in comparison
with the characteristic time scales in the problem, the SIMC technique has less overshoot than IMC but
both SIMC and IMC give the same steady state solutior..



n(x,t=0) 0.25
Fvx,t=0) 0
fQ>0v,x=0,) 0
f(u<Ovx=1,0 0

Ky 15.3422

K, 15.3422

Ay 3.33564

Cia 0.245423

Cy 0.667128
Table |

Physical problem parar-eters for Figure 1.

5. Algorithm performance

We consider in this section how the execution tines for IMC and SIMC compare as we vary the opti-
cal thickness of a problem. To do this we take the problem configuration of Section 4 and vary the optical
thickness of the slab by choosing one of the values .1, 1, 10, 100, or 1000 for the coefficients K, and K,,.
In Figure 2 we plot the execution time versus the resuliing equilibrium slab optical thickness, for the prob-
lem evolved to 1=20 using a time step size of 1.0. For an optically thin problem the SIMC algorithm is
about 30% faster than the IMC algorithm (provided the Monte Carlo dominates execution time as is the
case here). This is caused by the simpler Monte Carlo of SIMC which contains no effective scattering
terms, thereby removing the work of computing the distance to next collision. As the opacity of the prob-
lem is increased the divergence of execution time for (MC is clear while the SIMC algorithm maintains a
virtually constant execution time. This striking impro,ement in the execution time, while maintaining the
same level of robustness, makes SIMC extremely desirible for optically thick problems.

In Table 2 we show the execution times for SIM* on a sample problem, 20 time steps of the problem
of Section 4, as the number of zones is changed. The timings in the column labeled scalar are execution
times in seconds for a 16 mhz Intel 80386 based systein with a Weitek 1167 floating point accelerator. The
timings in the column labeled vector are execution tines in seconds for a Cray XMP 4/16 using the LLNL
C/Civic hybrid compiler. The numbers in parenthese; are the ratios of execution times above and below
the respective entry. The linear system solve is efficiently vectorized on the Cray machine, reducing its
relative costs as compared to the Monte Carlo by abot - a factor of 10. The same source program, coded in
C, was used on both machines and the identical nume:ical results were obtained. Unfortunately, the 1024

zone problem could not be run on the Cray machine diie to its 8 million word memory limitation, enforced



by the operating system.

Note that as the number of zones is doubled. the ratio of execution times is less than 2 for small
numbers of zones. On the scalar machine the ratio ¢f execution times rises to 3.17 as we double from 256
to 512 zones, and increases to 5.25 as we double from 512 to 1024 zones. On the vector machine the ratio
remains less than 2. The ratio of less slightly less rthan 2 for small numbers of zones results when the
Monte Carlo dominates execution time. As the zone width is halved the number of tracks made by a bun-
dle for a large time step size is doubled. When the e:tecution time is dominated by the linear system solve
the use of Gauss elimination results in a ratio of 8 in t e execution times as the number of zones is doubled.
The ratio of execution times as we double the numb:r of zones from 512 to 1024, running on the scalar
machine, indicates that the linear system solve is heginning to dominate the execution time. This is
confirmed by an execution profile that indicated that 60% of the time was spent in the linear system solve,
For the vector machine the ratio of execution times, as we double the number of zones, remains below 2 in
this table. The point at which the linear system solve dominates the total execution time is postponed to a

larger number of zones by the efficient vectorization of the linear system solve.

nzones scalar vector
32 266. 17.21
(1.'5) (1.68)

64 464.% 28.89
(1.79) (1.80)

128 924.; 52.12
(2.17) (1.91)

256 22830 99.48
(3.17) (1.98)

512 7240} 197.26

(5.2%)
1024 380050 na
Table '

Execution times for a sample problem a: the number of zones is increased.

6. Discussion

We have developed a new technique, symbolic implicit Monte Carlo (SIMC), for the solution of
radiation transport problems involving spontaneous emitsion. The new technique preserves the robustness
of traditional implicit Monte Carlo (IMC) while removin; the effective scattering term which is a source of
inefficiency for optically thick problems. We have dem:nstrated that the symbolic technique delivers the
same results as traditional IMC, with slightly less overshoot for large time step sizes in a time dependent

problem, and provides the same level of robustness.
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The SIMC technique is slightly faster than the IMC technique for optically thin problems and pro-
vides an execution time which is independent of opacitv. This is a startling speed improvement for opti-
cally thick problems. In the symbolic technique we have traded the effective scattering term of the IMC
technique for a linear system solve to obtain the atomic population fractions at the forward time. A linear
system solve can consume a great deal of computer time for a large number of zones. As problem sizes
grow, sophisticated techniques will have to be exploited to minimize the time spent in the linear system
solver. We have shown that problems with up to 1000 zones can be addressed, using Gauss elimination
which would be the worse case linear system solver, be:fore one needs to worry about the performance of

the linear system solve.

This paper is intended only as a vehicle to introduce the SIMC technique and concerns itself with a
very simple line transport application. The idea of using symbolic weights in a time dependent Monte
Carlo can almost certainly be applied to the LTE transport problem of [1]. The linear system solve of the
line transport case becomes a non-linear problem in the |.TE case due to the T* dependence of spontaneous
emission on the material temperature 7. The SIMC technique was developed to provide a technique which
could be easily generalized to multiple line problems, including gain. We will publish the generalizaiion of

SIMC to the multiple line problems in a future work.

Symbolic implicit Monte Carlo technique will lik:ly play an important role in time dependent NLTE
and LTE transport calculations. Banishing the effective: scattering term provides a startling speed increase
on problems with high opacities and opens up the possibility of treating problems with multiple lines,
including gain. The idea of using Monte Carlo particle: with symbolic weights, with their numerical values
to be determined after the track histories are recorded. may prove to be a valuable asset to other Monte

Carlo applications as well.
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