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Abstract

The photon transport equation is transformed into a new form by considering
the deviation of the specific intensity from the local equilibrium field. We call the
new form of the equations the difference formulation. It is rigorously equivalent to
the original transport equation. The difference formulation is particularly suited for
thick media, where the radiation field approaches local equilibrium and the devia-
tions from the Planck distribution are small. The difference formulation for photon
transport also clarifies the diffusion limit. Preliminary results confirm our expec-
tations of a substantial advantage for accurate numerical calculations in optically
thick media.
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1 INTRODUCTION

The transport of photons in thick media is of great importance in many fields
of science. Radiation transport determines the temperature distribution in
stellar interiors as well as the observable spectrum of stellar atmospheres. The
temperature on the surface of the Earth depends on the amount of solar radia-
tion reflected by clouds. Photon transport is the dominant cooling mechanism
even in moderately hot bodies, with material opacities moderating the loss.

The natural way of deriving the transport equation is to follow the propaga-
tion of narrow beams of photons as they are emitted, propagate in vacuo, are
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scattered and, finally, are absorbed by matter [1], [2]. In transparent media
the absorption, emission and scattering of photons is weak and the trans-
port equation describes the overall propagation very well. Mathematically,
the equations of propagation are hyperbolic partial differential equations and
their numerical solution is relatively easy and stable in optically thin media.

In optically thick media, however, the probability that a photon propagates in
a straight line, unhindered, is very small; radiation transport is dominated by
many scattering, absorption and re-emission events. As a result, the solution
of the transport equation in thick media is not straightforward. An important
example is hot, dense matter with a high absorption coefficient. It results in
conditions of local thermodynamic equilibrium (LTE) and very strong emis-
sion of photons. The emitted photons, in turn, are quickly re-absorbed, heating
the medium locally. The net emission (or absorption) is then a small differ-
ence between two large terms. The process leads to stiffness of the transport
equation: the local temperature relaxes much faster than any excess energy is
transported away. In any numerical method that uses explicit differencing to
balance spontaneous emission with absorption, the stiffness can cause insta-
bility, as well as a significant increase in noise for Monte Carlo methods. If the
scattering coefficient is high a photon does not propagate in a straight path.
This poses a difficulty for methods that are highly dependent upon efficient
streaming of photons.

More generally, in thick systems the radiation tends to be nearly isotropic
and, eventually, close to local equilibrium with the matter temperature. The
computational burden of performing transport calculations in this regime is so
high that the radiation diffusion equation [3] is often solved instead, in order
to efficiently obtain an approximate solution to the problem of interest.

In this paper we transform the transport equation in a new way. The trans-
formation is achieved by considering the difference between the radiation field
and the local equilibrium field at each point in the problem domain. The local
equilibrium field is a function of the matter temperature, and therefore a func-
tion of both space and time. This makes the transformation a function of both
space and time. One might suspect that it would lead to a transport equation
that is difficult to deal with. In fact, however, the resulting equation contains
only quantities that are small when the system is thick. In particular, the large
emission term and its (almost) compensating absorption term are replaced by
a pure absorption term for the “difference field”. The only sources for it come
from the variation of the material temperature in space and time. We call the
resulting formulation for radiation transport the difference formulation.

Why is the difference formulation interesting? To summarize, the equations
are written in terms of quantities that are “natural” in thick media. (The
traditional formulation is written in terms of variables that are natural in thin



media.) In hot, dense matter the terms describing the nearly equal emission
and absorption of photons are eliminated and only the small, net transport
terms appear in the equation. We expect that this change of variables will aid
in its numerical solution: it will make it less stiff, more numerically stable,
and it will reduce the noise in Monte Carlo methods. In fact, preliminary
results on a very simple model system confirm our expectations. Derivation
of the diffusive behavior of the transport equation in thick media is simplified
and clarified by the difference formulation. As the difference equation is able
to satisfy the correct physical boundary conditions, we hope to find a fast
and accurate alternative to the radiation diffusion equation. Finally, the new
formalism might lead to the development of new numerical methods.

The rest of this paper is organized as follows: In Section 2, the traditional for-
mulation for transport is presented, along with a discussion of the parameters
that become small for thick media. We introduce the difference formulation
in Section 3, first in a context without scattering where the new source terms
are easily understood. We analyze the source terms in some detail. We show
how the difference difference formulation leads to a simplified discussion of
the diffusion limit. We then write down the general equations and develop
them for the case of coherent scattering. In Section 4 we present preliminary
results, applying the difference formulation to Monte Carlo calculations for a
simple two-level system. We end with a discussion. Higher order treatment of
asymptotic expansions are considered in an Appendix.

2 Radiation transport in LTE

2.1 Traditional formulation

Radiation transport and its coupling to matter is described by the equations of
radiation hydrodynamics. In their general form, they consist of the equations of
hydrodynamics coupled to those of radiation transport and to the interaction
of radiation with matter. Excellent treatises have been written by Pomraning,
[4], Mihalas [2] and Castor [1].

In this paper we deal only with a subset of those equations. They are the
radiation transport equation, the material energy balance equation and the
conservation equation for the sum of the radiation and material energy. Fur-
thermore we assume local thermodynamic equilibrium (LTE) - i.e. that the
material has a well defined temperature - it emits radiation thermally. We also
assume that the material is at rest or that it moves with constant velocity.
In real hydrodynamic cases, where different parts of the material move at dif-
ferent velocities, the “co-moving frame transformation” has to be used and



proper account has to be given to kinetic energy and hydrodynamic work [1].
When the local acceleration of the material is significant, general relativity has
to be invoked [5]. Our equations are written in the rest frame of the material,
assumed to be an inertial frame. Otherwise, the scattering terms would have
a more complicated angle and frequency dependence.

The transport equation describes the propagation of the radiation field in
terms of the specific intensity, I(x,t; v, ), where x,¢ are the space and time
variables, v is the radiation frequency and €2 is a unit vector in the direction
of propagation.

101(x,t;v,Q) . B
SR QI Q) =

oo, T(x, 1)) [B(v, T(x,1)) — I(x,t; 1, Q)] + Q(I) (1)
B(v,T) is the thermal (Planck) distribution at the material temperature,
T(x,t), and c is the speed of light. The absorption coefficient, ¢/, and the

scattering term, (Q(/), will be defined below. The specific intensity is related
to the photon distribution function f(x,t;v, Q) by

I(x,t;v,Q) = chvf(x,t;v,Q2) | (2)

where hv is the photon energy.

In Eq. (1), all the variables, I, 0!, B are functions of the independent variables,
x, t; v, and/or T'(x, t). In the following, the independent variables will mostly
be suppressed.

The emission function and the absorption cross sections, corrected for stimu-
lated emission, are

B(l/, T) _ %:3 (ehz//kT B 1)—1 7 (3)
o, (v, T) = 0a(v,T) (1= /) (4)

with o, being the “ordinary” absorption coefficient, per unit distance.

The scattering terms are denoted by Q(1)



oo 2] / Q/
- O/du’4/dﬂ’as(u Q) (1, Q) l1 + %] , (5)

where the x,¢;T dependence of o, has been suppressed. In LTE there are
thermodynamic relations among the partial scattering cross sections in Eq.
(5). These follow from the observation that the radiation field reduces to the
black body spectrum no matter what the scattering cross sections are. See Eq.
(30) below.

The zeroth moment of the intensity gives the radiation energy density
1 o0
Frug = - /dl/ /dm (6)
c
0 4

and its first moment is the radiation flux vector

Frog = /dy /dﬂ Qr . (7)
0 47

Interaction of radiation with matter is expressed by the conservation law

aEmat

/dy/dﬂa 1 — B, T)] /du/dQQ , ®)

where FE,,,; is the energy per unit volume of the material and G is a volume
source of energy.

In the absence of hydrodynamic work terms or thermal conductivity, the total
energy of the radiation field and the material are conserved

a(Eimat + Erad)
ot

+VFwm=G . 9)

2.2  Thick media

We all have a common-sense concept of a thick medium; we attempt to clarify
it here. One property of radiation in thick media is that its distribution is
almost isotropic. Another property of thick media is that the transport of
energy by radiation is severely hindered.

In the spirit of the first property we define a streaming parameter, € eqm; it is
the ratio of the magnitude of the actual radiation flux, |F,q4|, to the maximum



possible one

L |Frad|

Estream +—
& Erad

(10)

It is clear that 0 < €4ycam < 1 and that €4,eqm = 1 only if the radiation streams
in one well-defined direction. In thick media, € cqm 1S a small parameter:
Estream < 1.

In the spirit of the second property, we look at the ratio of the photon mean
free path, [,,q and some scale length, L. The scale length defines the distance
of significant variation in the properties of the material. We define

4 lrad

space ‘= — . 11
617 3L ( )

In thick media €gpq0e < 1.

In thick media that strongly absorbs and emits radiation, far from any bound-
ary layer, the diffusion approximation is valid. In the diffusion limit, the pho-
ton mean free path is determined by the Rosseland mean opacity, l,.q = 1/0r
and the scale length is set by the rate of change in the temperature: 1/L =
(1/47*)|V(T*)|. In the diffusive regime the radiation energy density is that of
a black body, E,qq = aT? and the diffusion flux is F,qq = —(ac/30r)V(T?).
(Both of the preceding formulas are valid to first order in the small parameter
€space-) Simple algebra shows that in the interior of a thick, strongly absorbing
and emitting region, without scattering, the two approaches give the same
result

6spoLce =~ €stream . (12>

The time rate of change of conditions in thick media can be estimated in a
similar manner. We define a small parameter that is the ratio of the free flight
time of a photon to the time rate of change of the temperature

1 107!

ime “— T i ag 13
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Heating of the material results from radiation transport. Using the smallness
of the energy flux, €cam < 1, from the energy balance in a small volume we
get the estimate

3E,
2 rad
€time ESpace Erad 9 E at/ 9(T4) ( )




The parameters €gyeam, €space a0 €time are not small in some boundary layers
and in the leading edge of thermal waves.

3 The difference formulation

In the introduction we discussed the difficulties of solving the transport equa-
tion, Eq. (1), in thick media. In the previous section we identified the streaming
parameter, €gcqm, that is small in thick media. We now show a very simple
transformation of the transport equation so that it is written in terms of vari-
ables that are small in thick media. We call the result of the transformation
the “difference formulation.” In the following we show the transformation in
a simple case and discuss its remarkable properties.

3.1 The difference formulation without scattering

We start by repeating the transport equation, Eq. (1), without scattering

101(x,t;v,Q) _ B
s + Q-VI(x,t;v,Q) =

— ol (v, T(x,t))[[(x,t;v,Q) — B(v, T(x,1))] . (15)

The equation is written in terms of the specific intensity carried by photons,
I(x,t;v,82). The left-hand side of the equation describes their unhindered
propagation, the first term on the right-hand side describes their attenuation.
The two terms on the left-hand side and the first term on the right-hand side
constitute a homogeneous equation. The last term on the right-hand side, o/ B,
is a “source term” that makes the full equation inhomogeneous. It describes
the emission of radiation by matter. From our considerations in the previous
section, we expect that the difference between the two terms on the right-hand
side is of the order of €ycqn in thick media, even though each term by itself
is of the relative order unity.

We introduce now a “difference intensity”

D(x,t;v,Q) = I(x,t;v,Q) — B(v,T(x,1)) (16)
and subtract (1/¢)(0B/0t) + -V B form both sides of Eq. (15).

lﬁD(x, t;v, Q)

5 + Q-VD(x,t;v,Q) = —0, (v, T(x,t))D(x,t; v, )
c



_10B(v,T(x,1))

. p — Q- VB, T(x,t)) (17)

Let us rewrite it with the independent variables suppressed for clarity.

10D 108
S L QvD=-D--2 _ QvB |
c@t+ Vv a c Ot Vv (18)

It should be emphasized that Eq. (18) and Eq. (15) are completely equiva-
lent. In particular, they are able to satisfy equivalent initial and boundary
conditions. The positivity constraint, I > 0, translates into D > —B.

It is important to investigate the properties of the new equation, (18), com-
paring it to its traditional counterpart, Eq. (15) and, by extension, to Eq.
(1). The terms on the left-hand side and the first term on the right-hand side
of Eq. (18) are completely analogous to those in Eq. (15): they describe the
straight line propagation and the attenuation of the difference intensity, D.
We conclude that the intensity I and the difference intensity D propagate the
same way. In particular, their Green’s functions (propagators) are the same.

In contrast, the inhomogeneous source terms have been changed drastically.
The source term in Eq. (15) is 0/, B & B/l,44, while the last source term in Eq.
(18) is 2-VB ~ B/L. In thin media, where [,,q4 > L, the first version of the
source term is small, while in thick media, where [,,4 < L, it is the other way
around. In addition to the question of asymptotic behavior, the source terms
in the difference formulation are smooth in the frequency domain as they do
not involve a factor of o7,.

The formulas in the previous section can be used to estimate the orders of the
terms in Eq. (18) in optically thick regions. Let us divide the equation by o/, B
and consider the D/B term as the unknown. In thick media, the dominant
source term is |Q-V B| /0., B & €gpqce; therefore we conclude that D/B = €spqce.
We can then estimate that the other terms (1/¢)(0B/0t)/0! B = €time = €

and Q-VD/o, B = €. Finally, the (1/¢)(0D/0t) /o, B term is of order eg’pl;ce.
Another significant difference between Egs. (15) and (18) is in the angular
dependence of the source terms. The source term in the traditional formula-
tion is o) B; it is spherically symmetric, i.e. of Py symmetry. The dominant
source term in the difference formulation is {2-V B; it is antisymmetric in an-
gle; more accurately it is of P; symmetry. In the difference formulation there is
also a small source term, (1/c)(0B/0t) of Py symmetry. While the ¢/ B term
adds energy to the radiation field, in the difference equation the dominant
source term, €2-V B, only transports the difference intensity; it adds nothing
to the total energy of the radiation field. That task is relegated to the small
(1/c)(0B/0t) term.



The source term in the traditional formulation for photon transport, o/ B,
accounts for spontaneous emission and is balanced by absorption in a thick
system. In the difference formulation, the reference value for the radiation
field is B, not zero. This reference value is a function of the local temperature,
T(x,t), and is therefore a function of both space and time. The new source
terms in the difference formulation have a straightforward, intuitive interpre-
tation. The term involving the time derivative of B can be understood from
energy conservation. If the local temperature changes, the resultant change
in B, all else remaining constant, must be accounted for by a change in the
difference field, D, in order to maintain (locally) the energy in the radiation
field.

The term involving the space derivative of B is more interesting. To under-
stand this term, consider transport in one-dimensional slab geometry where
this term is now written pdB/dz; the direction cosine of the propagation di-
rection is u = €2-X, where X is a unit vector perpendicular to the slab. If the
temperature is uniform, dB/dx is zero and there are no sources. Consider,
however, the case where there is a positive step in the value of B, of magni-
tude b, at the origin. The source term, udB/dz, is now pbd(x). The difference
field has a source term only at the origin, with a negative source for positive
1 and a positive source for negative pu. The right-moving negative source is
interpreted as the missing photons that would have been streaming across the
origin if the step in B did not exist. The negative sources are “photon holes”,
borrowing a term from solid state physics. The left-moving positive source is
simply the photons being emitted from the hotter region into the cooler re-
gion. More succinctly, the u dB/dx term generates the transport between the
hotter and cooler regions that would otherwise not occur. The total “photon”
energy emitted at the origin integrates to zero.

For completeness, we write the radiation energy density and its first moment,
the radiation flux vector, in terms of D

17 17

Erad = —/dl/ /dQI — - /dz/ /dQ(D +B) (19)
¢ 0 4 ¢ 0 4

Frog = /du /dQ QI = /du/dQ QD | (20)
0 4 0 47

and the coupling of the radiation to the material, from Eq. (8)

a%;"‘t - /dy/dna;D LG (21)
0 4



The energy conservation equation, (9), is unchanged.

3.2 The diffusion limit, without scattering

In thick media, in LTE, far from boundaries, after sufficient time, radiation
tends to the diffusion limit. This is a well established result of asymptotic
analysis; nevertheless even very recently a reanalysis was published by Morel
[6]. We show now how the difference formulation leads to the diffusion limit.
In fact we will show it in two different ways. First, we formally integrate the
transport equation; second, we show that the traditional asymptotic expansion
yields the same result to first order. It has to be emphasized that we show
the diffusion limit of the exact transport equation; therefore it includes all
terms, it is able to satisfy boundary conditions correctly and it includes the
treatment of boundary layers.

3.2.1 Formal solution
Equation (18) has a formal solution. We define a path variable, s, by

x=x9+ Qs ; t=to+s/c . (22)

It is easy to see that Eq. (18) can be written as

dD . dB
— = _¢D-=2 2

giving the formal solution

—/ds'dii;s/)exp [—-/sag(s")ds”] : (24)

The formal solution shows that the boundary condition, D(0), decays in a few
absorption lengths. Deep in the material o/ varies slowly. In fact both ¢/, and
dB/ds are constant to first order in €gpeqm- Eq. (24) can then be integrated.
The result is

D(s) = lD(O) + U_l’ccil_f} exp[—ols] — 1dB . (25)

/
A ol ds
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It shows that

D(s) = — (26)

is the steady-state solution of Eq. (24) and that any boundary value of D(0)
decays to it in a few absorption lengths. A result that is correct to second
order in €g,0qm 18 sketched in the Appendix. It uses the mean value theorem
of integration.

3.2.2  Asymptotic expansion

The relative orders of various terms in the transport equation, Eq.(18), in
thick media were estimated in Section 2.2. The estimation is valid far from
boundary layers and time transients. To first order in €geqm, there are only
two terms

0=-0'D— QVB (27)

giving the solution

B ~ 10B |
D_——QVB —;ﬁqnvw). (28)

[l

The radiation flux, from Eq. (20), is

1 0B 4 ac 4
Froa = — [/di/ L OTA V(T = —5—V(T7) . (29)

30’R

This is the correct diffusion limit of the transport equation. We also recovered
the correct definition of the Rosseland mean opacity, og; see [1], [2]. To first
order Eq. (29) is identical to Eq. (25). It confirms the first order accuracy of
the diffusion flux [6]. Note the utter simplicity of the derivation.

An expansion in higher orders of €4,.cqm can also be carried out. The results

are similar to those of Morel [6], but they are slightly different and more
consistent. A short discussion is given in the Appendix.
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3.8 The difference formulation, in LTE, with scattering

3.3.1 The scattering term

The scattering term was displayed in Eq. (5). In LTE, the Planck distribution
at the material temperature is stationary and it also satisfies detailed balance.
This imposes thermodynamic conditions on the scattering cross sections

EUS(V/ — v, Q-Q)B(() ll + 02555)]
ot =) 5 1+ 0] e

where the x,t;T dependence of o, and B has been suppressed. After some
algebra we get the surprising result

QD)= fa fast o/ ~ vrst)p. ) |1+ SR
0 4

2hv3

(31)

o0 2D /Q/
—ﬁw/anqyﬁwmnmpwmnF+5—QLJ]
0 47

2hv'3

We would like to stress that Eq. (31) is valid only in LTE. Otherwise the
stimulated scattering terms cannot be written in terms of D alone.

If scattering does not change the radiation energy, e.g. in Thomson scattering,
the stimulated emission terms in Eq. (5) cancel identically and an isotropic
distribution is stationary under those conditions. In fact, we define, as usual

1
¢me:ﬂﬂmmmﬁ). (32)
47

Then I = J is stationary and Eq. (5) can be written as

Qmmu—ﬁ:ﬁmwgmnﬂﬂu%wyﬂmm

—ﬁmwg%nnﬂn%m—J@n. (33)

In the scattering terms, Egs. (5), (31), (33), both o4(v — v, Q-Q') and I(v, Q)
or D(v, ) can be expanded in spherical harmonics [7]. The integrals are then

12



reduced to relaxation equations for the spherical harmonic components of D,
or I — J, respectively. In particular, if the scattering is isotropic, Eq. (33)
reduces to

Qmono(I - J) - 08(”) (I - ‘]) : (34)

Finally, we note that the scattering terms are always proportional to

oo(v) = /dQ’ oy (1, Q) (35)

and to the analogous expressions in Eqgs. (5), (31).

3.3.2  The full equations

The full equations in the difference formulation, in LTE, are obtained by
adding the right-hand side of Eq. (31) to the right-hand side of Eq. (17). As the
change of the radiation energy caused by scattering comes from the matter,
the integral of Eq. (31) over frequency has to be subtracted from Eq. (21),
in analogy to Eq. (8). They have to be solved together with the conservation
equations, Eq. (9). In the more general case they have to be solved together
with the full set of equations of radiation hydrodynamics [1], [2], [4].

Rather than presenting the formal development of the equations, we will sketch
their simplified version that gives some insight into the relaxation behavior of
the radiation intensity. We start by rewriting Eq. (1) in terms of the path
variable, s, as defined in Eq. (22). We also take liberties with the scattering
term; we tacitly assume it to be monochromatic and isotropic, as in Eq. (34).

% = —ol(I-B)—o,(I—-J) . (36)

Simple rearrangement gives

Y U= B) (Gt o)I ) (37)

In parallel to our development of the difference formulation, we subtract dB/ds
from both sides of the equation, to give

d(I—1J) d(J-B) , IB
ot = =B) = (ot )I =) -~ . (38)

13



With the further assumption of dB/ds = 0 and the constancy of ¢/, and o,
along the radiation path, it is easy to verify that Eq. (38) has the solution

J = B =[J(0) - B(0)]exp[-0gs] . (39)
I —J=1[I(0) — J(0)|exp]— (o, + 05)s] . (40)

We note at this point that the material relaxation equation, Eq. (8), can always
be written as

aEmat
ot

e /dua;(,] ~B)+G (41)
0

so J — B is a natural variable to consider.

We emphasize again that our derivation of the solution of Eq. (38) was highly
simplistic. In particular it did not take into account material relaxation and
the possibility of scattering with change of photon frequency, e.g. Compton
scattering [1]. We hope to report later on further developments along these
lines.

4 Preliminary Numerical Results

A detailed study of a Monte Carlo method for the numerical solution of the dif-
ference formulation will be presented elsewhere [10]. We offer here preliminary
results that confirm our expectation that the difference formulation provides
a significant performance advantage in optically thick media. This advantage
arises from the fact that the local equilibrium field is treated deterministi-
cally, in addition to the quantitatively different character of the source terms
that lead to substantial noise reduction for a Monte Carlo solution of a thick
system.

We have implemented the difference formulation for the simple two-level line
transport problem discussed in [9], specifically for a collisionally pumped slab
problem. We made the additional simplification of the gray approximation
(square line shape) in order to avoid the need to switch to the standard for-
mulation in the wings of the line. The slab was started cold, the pump was
turned on, and the evolution followed close to equilibrium. In the table below,
we show the variance in the optical thickness at the end of the problem run
for a large number of independent Monte Carlo runs, where the absorption
coefficient has been adjusted to produce a nominal (average) equilibrium opti-
cal thickness for the finite slab of 10, 100, and 1000, respectively. Twenty one

14



equally spaced zones were used for the first case with a total optical thickness
of 10. Twenty one geometrically spaced zones, with the surface zone on each
side of the finite slab being one mean free path thick, were used for other two
cases.

The Monte Carlo particle count was chosen so that the nominal execution
time was three minutes, reaching a fixed point in time for the evolution of the
system close to equilibrium. The column labeled DIFF, in Table 1 below, is
the variance in the optical thickness of the slab for the difference formulation
for a large number of independent problem runs. The column labeled SIMC is
the variance in the optical thickness of the slab for the standard formulation
described in [9]. In the last column the ratio of the variances provides an
estimate of the advantage in the execution speed for the difference formulation,
compared to the standard formulation.

Table 1

Comparison of variance for the difference and standard formulations, respectively,
as a function of optical thickness for a finite slab.

optical depth | DIFF SIMC RATIO
10 1.19%x107% | 1.96x107° | 1.6x10!
100 1.15x107% | 7.88x1073 | 6.9x103
1000 1.31x107% | 8.64x107! | 6.6x10°

The performance advantage for the difference formulation is clear. The vari-
ance for the runs using the difference formulation is independent of optical
thickness, in sharp contrast to the standard formulation. The ratio of the
variances, giving the performance advantage for the difference formulation,
grows rapidly as the optical depth is increased. Of course, the average results
are the same for the two formulations.

5 Summary and conclusions

We have introduced a new analytical formulation for the transport equation.
The new formulation is for the transport of the difference between the specific
intensity and the local black body equilibrium radiation at the matter tem-
perature, at any point in space, time and direction. Appropriately, we call the
new transport equation the difference formulation to distinguish it from the
traditional formalism. We have shown that the difference formulation is ex-
pressed in terms of quantities that become small in optically thick media. The
transformation is a simple one and results in a completely equivalent system
of equations, without approximation.

The most important distinction between the two formulations is in the source

15



terms. In the traditional formulation, the source term is the spontaneous emis-
sion of the medium. It is small in optically thin regions, resulting in straight
line propagation of photons. The traditional formulation is well suited for this
regime. In the difference formulation, the source term is the space-time gradi-
ent of the Planck function at the material temperature. The latter gets small
in optically thick regions. In addition to this important difference in asymp-
totic behavior, the two formulations differ in that the spontaneous emission
depends upon the absorption cross sections for the emitting medium, while
the source term in the difference formulation depends only upon the temper-
ature of the medium, as a function of space and time. The two formulations
are able to satisfy equivalent boundary conditions and initial conditions.

Even the largest terms in the difference formulation are of the order of €pqce,
i.e. the ratio of the photon mean free path to the gradient length. In optically
thick regions this ratio is a small quantity. We have shown that the equa-
tions reduce to the diffusion limit in the proper circumstances. We have also
discussed briefly the extensions needed when scattering is important.

In all practical problems the transport equation has to be solved numerically.
Numerical solutions require discretization of the equations in space and time.
These issues will be discussed elsewhere.

We believe that the difference formulation will help in numerical solutions
of the equations of radiation hydrodynamics in optically thick regions. We
expect that it will be useful regardless of the numerical method employed, be
it a deterministic method, for example S,, and P,, or a Monte Carlo method,
for example the Symbolic Implicit Monte Carlo (SIMC) method of Brooks [8].
The source of instability for Monte Carlo methods, the spontaneous emission
term, is removed in the difference formulation and replaced by terms that are
small in thick systems. Because of this, the well known stability problem for
Monte Carlo methods in thick systems may, in fact, be removed. We will report
on this possibility in future work. We would like to note that the Symbolic
Implicit Monte Carlo method is well suited for dealing with the (1/c¢)(0B/0t)
term, should it be a source of instability. Preliminary results show that the
efficiency for Monte Carlo methods in thick systems will be improved, due to
the removal of the balance between emission and absorption in a zone that
produces a relatively noisy estimate for the difference.

A similar treatment may be useful in other transport problems. Neutron trans-
port near criticality has many of the same properties as photon transport in
optically thick regions. Similarly, the success of radiation therapy depends
on accurate model of particle transport in the presence of strong absorption
and scattering. We hope to be able to extend our treatment to some of those
applications in the future.
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6 Appendix

The first order approximation of the transport equation in thick media shows
both the boundary layer and the diffusion limit. We have shown in the paper
how easy it is to get those limits in the difference formulation. Here we go to the
next order in the expansion of the formal solution and to higher order in the
asymptotic expansion of the transport equation. We stay with the assumption
of no scattering. There is no difficulty to include scattering, but the equations
get really complicated.

6.1 Formal solution

The first order approximation to the formal solution of the difference formula-
tion of the transport equation, Eq. (24), was obtained in Eq. (25). We sketch
here the steps to obtain a higher order approximation. First, the integrals in
the exponential terms are approximated using the mean value theorem, giving

B erplon(sn)(s =) (42)

D(s) = D(0)eapl~a4(s1)s] — [ ds

where 0 < 57 < 5, 8 < 89 < s. Next, we approximate o/,(s2) =~ o.,(s) +
(do’ (s)/ds)(se — s). We note that

0 < |(do’(s)/ds)|(s — s2)(s — s") < |(do’(s)/ds)|(s — s')? < 1, where the last
inequality is reasonable for optically thick media, if s < L where L is the scale
length of the medium. It allows the estimate exp|—(do’,(s)/ds)(s—s2)(s—5")] ~
1 — (do’(s)/ds)(s — s')?. Using this approximation, the second integral in Eq.
(43) can be carried out, giving the final result

o exp[—a;@)sb)] W)

a
We remind the reader that s; and s3 are appropriate points in the interval,
0 < 51,83 < s and dB(s3)/ds denotes the value of the derivative at s = s3.

The maximum error in the first order solution, Eq. (25), can be estimated by
comparing it with Eq. (43). It is easy to verify that it is of second order in

Estream -
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6.2 Asymptotic expansion

In Section 2.2 we discussed the smallness of the parameters € cqm and €gme.
In traditional asymptotic analysis one multiplies the relevant terms in the
equations with the correct orders of an artificial parameter, €. The original
equations are then recovered when the parameter is set to unity. Our treatment
here again neglects scattering. It is similar to that of Morel [6], but more
general by including non-grey opacities.

The relevant equations to solve are Egs. (18), (9), (21). We write them down
here with the proper powers of .

€2 8D €2 aB
a Ema Era
20 Emat + Eraa) eV-Fr0q =0 (45)
ot
E o0
2 0B mat a’;‘“ _ /dl/ /dﬂo—;D (46)

For completeness, we repeat Eqgs. (19), (20)

Epoy = /dl/ /dQ (D + B) /dz/ /dQD Yab |

Frot = /dy/dﬂ(ﬂ[) — /du/dQ(QD) ,
0 47 0 47

where we defined 6 := T* and used the radiation constant, a, in its usual
meaning.

Next we note that VB = (0B/06)V6. Similarly, 0B/0t = (0B/00)00/0t and
OFmat/0t = (dE e /d0)00/0t. Next, we expand the variables in power series
in €

0 =00 40V 1+ 20 4 (47)

D=eDW + 2D (48)

The definitions of 8 and D are substituted into the equations and we demand
that the equations be satisfied order by order in e. We list now the results.
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To order € we get

EY =ab® | (49)
where a is the radiation constant. In other words, to zeroth order the radiation
is that of a black body in equilibrium with the material.

To first order in € we recover our Egs. (28), (20)

1 OB

D(l):—a—aQVB——U—wQVQ : (50)
Fl) - [/d 01 %? 0O — —%ve@ , (51)
and find
md =adM | (52)
To order € we find from Eq. (44),
Q-vDW = ¢/ D® — %%—?%m - %—? Q-ven (53)

and from energy conservation, Eq. (45), we get

(dEmat ) 06
+a

7 = V-/dy/dﬂm)(l) . (54)
0 4

Substituting for DM from Eq. (50), we find that 6(*) satisfies the diffusion
equation

dE pat 00

Among the equations of order €3 we consider only the one for conservation of
energy. It is

dEmat ae<1>
(4G o) 4 o

8D

—V/du/dQQD . (56)
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Equations (53), (56) can be solved for the pair of unknowns ) and D®.
Algebraic manipulations show that 81 satisfies a diffusion equation identical
to the one satisfied by 0, Eq. (55). We conclude that /1) = 0 is a consistent
solution of the transport equation to second order in €gpqe. This conclusion
agrees with Morel’s and confirms the second order accuracy of the diffusion
approximation under the proper conditions. The solution for D® follows from

Eq. (53), it is

(57)

The first term on the right-hand side has a P, symmetry and the last one is
spherically symmetric. We note that both terms contribute to E,,q and modify
the Eddington tensor. When the last term is added to the formula for DM,
the expression agrees with the (1/07)(dB/ds) source term of Eq. (26).
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