next up previous
Next: The treatment of endothermic Up: endep Previous: The endep_diff code to

Discrete two-body reactions

In this section we discuss the calculation of energy depositon to secondary particles for discrete two-body reactions. Suppose that particles 1 and 2 interact to form paricles x and y. Let mj denote the mass of particle j for j = 1, 2, x, and y, and let vj be its velocity in the laboratory frame. Then the kinetic of particle j in the laboratory frame is

Ej = $\displaystyle {\frac{{1}}{{2}}}$mjvj2,

We let Wj* denote the excitation level of the j-th particle, and Q0 the contribution of the mass difference to the energy of the reaction,

Q0 = (m1 + m2 - mx - my)c2. (1)
If particle 2 is at rest in the laboratory frame, then conservation of energy implies that

E1 + Q = Ex + Ey, (2)
where

Q = Q0 + (W1* + W2*) - (Wx* + Wy*).

The kinetic energies Ex and Ey of the particles x and y depend on the angles at which they are ejected. The endep code calculates the average values of Ex and Ey based on the probability-density data for the angles ( $ \tt I\_number$ = 1 data). Because this data is given in terms of the center-of-mass frame, we have to make a transformation to laboratory coordinates before we compute the average. The arguments given here are based on Newtonian mechanics, so it is assumed that we are dealing with particles that are not too energetic. We shall concentrate our attention on Ex since by a choice of the labels x and y, this represents the kinetic energy of either secondary particle.

The following derivation of a formula for Ex in terms of E1 and Q is based on the reference [1, pp. 91-94]. The plan of attack is to transform to center-of-mass coordinates and work out the kinematics there, and then transform back to the laboratory frame. We use primes to denote quantities in center-of-mass coordinates. Thus, if V0 denotes the velocity of the center of mass,

V0 = $\displaystyle {\frac{{m_1 v_1 + m_2 v_2}}{{m_1 + m_2}}}$, (3)
then v1' = v1 - V0, etc. It follows from conservation of momentum that

m1v1' = - m2v2',

and from this we may derive the relations

v1' = $\displaystyle {\frac{{m_2}}{{m_1 + m_2}}}$(v1' - v2')    and    v2' = $\displaystyle {\frac{{-m_1}}{{m_1 + m_2}}}$(v1' - v2'). (4)
These relations are useful because they represent v1' and v2' in terms of

v1' - v2' = v1 - v2 = v1. (5)
The same momentum conservation argument applied to the secondary particles shows that

vx' = $\displaystyle {\frac{{m_y}}{{m_x + m_y}}}$(vx' - vy')    and    vy' = $\displaystyle {\frac{{-m_x}}{{m_x + m_y}}}$(vx' - vy'). (6)

Let us now consider the consequences of energy conservation in the center-of-mass system. It follows from the definition (3) of V0 that

m1v12 + m2v22 = (m1 + m2)V02 + m1v1'2 + m2v2'2,

so that E1 in the the energy equation (2) may be replaced by

E1 = $\displaystyle {\frac{{1}}{{2}}}$(m1 + m2)V02 + E1' + E2'.

Likewise, under the assumption that m1 + m2 $ \approx$ mx + my, we may write the right-hand side of (2) as

Ex + Ey = $\displaystyle {\frac{{1}}{{2}}}$(mx + my)V02 + Ex' + Ey'.

In writing this equation, we have neglected a term equal to

(mx + my)$\displaystyle \left(\vphantom{
\frac{m_x v_x + m_y v_y} {m_x + m_y} - V_0
}\right.$$\displaystyle {\frac{{m_x v_x + m_y v_y}}{{m_x + m_y}}}$ - V0$\displaystyle \left.\vphantom{
\frac{m_x v_x + m_y v_y} {m_x + m_y} - V_0
}\right)$V0,

and if this difference is not small relative to Q, we should not be using Newtonian mechanics. In this same vein, upon neglecting the difference

$\displaystyle {\frac{{1}}{{2}}}$(mx + my - m1 - m2)V02,

the energy equation in center-of-mass coordinates takes the form

E1' + E2' + Q = Ex' + Ey'. (7)

We now perform some algebraic manipulations, using (4) and (6) to derive from (7) an equation for Ex' in terms of E1. We begin by expressing all of the kinetic energies in terms of squares of velocity differences,

    $\displaystyle {\frac{{m_1}}{{2}}}$$\displaystyle \left(\vphantom{
\frac{m_2} {m_1 + m_2}(v_1' - v_2')
}\right.$$\displaystyle {\frac{{m_2}}{{m_1 + m_2}}}$(v1' - v2')$\displaystyle \left.\vphantom{
\frac{m_2} {m_1 + m_2}(v_1' - v_2')
}\right)^{2}_{}$ + $\displaystyle {\frac{{m_2}}{{2}}}$$\displaystyle \left(\vphantom{
\frac{m_1} {m_1 + m_2}(v_1' - v_2')
}\right.$$\displaystyle {\frac{{m_1}}{{m_1 + m_2}}}$(v1' - v2')$\displaystyle \left.\vphantom{
\frac{m_1} {m_1 + m_2}(v_1' - v_2')
}\right)^{2}_{}$ + Q  
             = $\displaystyle {\frac{{m_x}}{{2}}}$$\displaystyle \left(\vphantom{
\frac{m_y} {m_x + m_y}(v_x' - v_y')
}\right.$$\displaystyle {\frac{{m_y}}{{m_x + m_y}}}$(vx' - vy')$\displaystyle \left.\vphantom{
\frac{m_y} {m_x + m_y}(v_x' - v_y')
}\right)^{2}_{}$ + $\displaystyle {\frac{{m_y}}{{2}}}$$\displaystyle \left(\vphantom{
\frac{m_x} {m_x + m_y}(v_x' - v_y')
}\right.$$\displaystyle {\frac{{m_x}}{{m_x + m_y}}}$(vx' - vy')$\displaystyle \left.\vphantom{
\frac{m_x} {m_x + m_y}(v_x' - v_y')
}\right)^{2}_{}$.  

Upon combining terms and using the relation (5), we find that

$\displaystyle {\frac{{m_2 E_1}}{{m_1 + m_2}}}$ + Q = $\displaystyle {\frac{{m_x m_y}}{{2(m_x + m_y)}}}$(vx' - vy')2.

If we again use the first of equations (6), we obtain an expression for Ex',

Ex' = $\displaystyle {\frac{{m_x}}{{2}}}$vx'2 = $\displaystyle \left(\vphantom{
\frac{m_y} {m_x + m_y}
}\right.$$\displaystyle {\frac{{m_y}}{{m_x + m_y}}}$$\displaystyle \left.\vphantom{
\frac{m_y} {m_x + m_y}
}\right)$$\displaystyle \left(\vphantom{
\frac{m_2 E_1} {m_1 + m_2} + Q
}\right.$$\displaystyle {\frac{{m_2 E_1}}{{m_1 + m_2}}}$ + Q$\displaystyle \left.\vphantom{
\frac{m_2 E_1} {m_1 + m_2} + Q
}\right)$. (8)

Figure 1: The relationship between velocities.

In order to transform (8) into the laboratory frame, we need a relation between the velocities vx and vx' depending on the collision angle $ \theta$ in center-of-mass coordinates. In order to do this, we use the fact that vx is the vector sum of vx' and the velocity V0 of the center of mass. See Fig. 1. With the notation that | V0| is the length of V0, we find that

vx2 = vx'2 + V02 +2 | vx'| | V0| cos$\displaystyle \theta$.

In (8) we make the approximation that mx + my $ \approx$ m1 + m2. Then, with the notation

$\displaystyle \alpha$ = $\displaystyle {\frac{{m_2 m_y}}{{(m_1 + m_2)^2}}}$,        $\displaystyle \beta$ = $\displaystyle {\frac{{m_y}}{{m_1 + m_2}}}$,        $\displaystyle \gamma$ = $\displaystyle {\frac{{m_1 m_x}}{{(m_1 + m_2)^2}}}$, (9)
it follows from (3) that we have

Ex = ($\displaystyle \alpha$ + $\displaystyle \gamma$)E1 + $\displaystyle \beta$Q + 2$\displaystyle \left\{\vphantom{
(\alpha E_1 + \beta Q)\gamma E_1
}\right.$($\displaystyle \alpha$E1 + $\displaystyle \beta$Q)$\displaystyle \gamma$E1$\displaystyle \left.\vphantom{
(\alpha E_1 + \beta Q)\gamma E_1
}\right\}^{{1/2}}_{}$cos$\displaystyle \theta$. (10)

The library data for the angular distribution ( $ \tt I\_number$ = 1 data) is given as the probability density p(E1,$ \eta$) with respect to the center-of-mass collision cosine

$\displaystyle \eta$ = cos$\displaystyle \theta$.

Consequently, in order to calculate the average secondary energy

$\displaystyle \langle$Ex$\displaystyle \rangle$ = $\displaystyle \int_{{-1}}^{1}$Exp(E1,$\displaystyle \eta$) d$\displaystyle \eta$,

we multiply (10) by p and integrate with respect to $ \eta$,

$\displaystyle \langle$Ex$\displaystyle \rangle$ = ($\displaystyle \alpha$ + $\displaystyle \gamma$)E1 + $\displaystyle \beta$Q + 2$\displaystyle \left\{\vphantom{
(\alpha E_1 + \beta Q)\gamma E_1
}\right.$($\displaystyle \alpha$E1 + $\displaystyle \beta$Q)$\displaystyle \gamma$E1$\displaystyle \left.\vphantom{
(\alpha E_1 + \beta Q)\gamma E_1
}\right\}^{{1/2}}_{}$$\displaystyle \int_{{-1}}^{1}$p(E1,$\displaystyle \eta$)$\displaystyle \eta$ d$\displaystyle \eta$. (11)



Subsections
next up previous
Next: The treatment of endothermic Up: endep Previous: The endep_diff code to