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1 Overview of endep

This note gives a description of the operation of the endep code, and it is an updated
version of Chapter III of the Omega manual [3]. The purpose of endep is to determine
the average energies of secondary particles, residual nuclei, and gammas, when the given
data includes angular distributions or energy distributions of secondary particles. One
difference between the current endep and that discussed in Chapter III of [3] is that the
treatment of reactions induced by incident gammas is no longer done by endep but is done
separately as described by the note [2]. I also wish to point out that much of the theory
presented here is also given in Perkins’s PD-note [5]. I have made some repetition here
for the sake of completeness.

At the end of this section I explain the usage of the endep diff code, to compare two
sets of energy-deposition files for a target.

The reader should also be aware of the related code nxgam, which has the purpose of
modelling gamma energy spectra when only average gamma energies are available. The
theoretical basis for nxgam is given in [4], and the instructions for use of that code are
contained in the note [6].

The endep code handles the following basic reactions:

1. The modelling of discrete two-body reactions is discussed in Section 2. For these
reactions the user must supply a file in ENDL format of angular distributions for the
secondary particle (I number = 1 data).

2. Section 3 discusses the treatment of continuum two-body reactions. For these reactions
the user must supply a file in ENDL format of energy distributions for the secondary
particle (I number = 4 data).

3. Either of the above types of reactions may produce an unstable residual nucleus. The
continuum decay of such a nucleus is described in Section 4. For each particle emitted
the user must supply a file in ENDL format of energy distributions (I number = 4
data).

In addition, as explained in Section 5, endep has special coding for the treatment of
gamma production, fission, and the breakup of deuterium, carbon, and beryllium.

1.1 Usage of endep

The best way to run endep is via the script

/nds/bin/endep.script

and the usage is
endep.script [directory name]

The command-line parameter is the name of the directory of files on which you want to
run endep. If no directory name is given on the command line, the script asks the user to
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supply one. Note that it is assumed that the data in this directory are for a single target
only. In fact, the endep code will stop if it sees data from two different targets.

It is assumed that the files in this directory are in the ENDL format. Before running
endep, the script runs endlret in order to concatenate the data into the order required
by endep. This requires that your directory contain a .index file listing the names of
the data files that you want to be processed by endep. If the script finds no .index file,
it makes one, based on the assumption that you have used the usual ENDL file naming
convention, namely, that data file names start out yo. . . . Hence, if you have named your
data files roulade and skinka, then you have to provide a .index file consisting of these
two file names on separate lines.

The script is set up so that the output from endlret is a file called endl.asc. The
next step in endep.script is to use the Perl script zacis.pl to parse the endl.asc file
and to write the structure to a file endep.zacis, which is used as input to endep.

Note that endep.script gets the bdfls file as an input to endep. The reason for this
is that endep uses bdfls for its list of atomic masses, and these are used in the calculation
of the mass-difference component of the energy of each reaction.

The user has the option of supplying an endep.input file, which has the following
purpose. For discrete 2-body reactions the input data for endep consists of angular dis-
tributions of secondary particles in terms of center-of-mass coordinates, and it is assumed
that this data may be interpolated linearly. But linear interpolation in the center-of-mass
system transforms into parabolas in the laboratory frame. Because we also want to be
able to do linear interpolation of the output from endep, the code inserts points on these
parabolas to guarantee an interpolation accuracy given by the parameter endep tol. The
default value of endep tol is 0.01, giving at least a 1% accuracy on the linear interpolation
of the parabolas. If the user wants to have, say, 1/2% accuracy on the linear interpolation,
he should supply an endep.input file in Fortran 90 namelist form,

&endep_opt

endep_tol = 0.005/

1.2 The output from endep

The script endep.script makes sure that where you are running the code there exists
a subdirectory data.new. The output of endep is a collection of files yo??c??i010s???

and yo??c??i011s??? in the data.new directory. The file naming convention is as usual
in ENDL. That is, yo identifies the emitted particle, c specifies the type of the reaction,
the i number is 10 for average energy to secondary particles and 11 for average energy
to the residual nucleus, and s indicates the identity of some of the numbers in the file
header. The script makes a .index file for the data.new directory and then runs endlret
to concatenate them into a lib.new file.

1.3 The endep diff code to compare energy depositions

Because the user may want to monitor differences between energy-deposition files, I have
written an endep diff code to do that. This code is also for use on reactions for a one
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target at a time, and the best way to run it is with the script

/nds/bin/endep diff.script

The usage of that script is

endep_diff.script [-Dir_1 dir_name_1] [-Dir_2 dir_name_2] \

[-Lib_1 lib_name_1] [-Lib_2 lib_name_2]

The first set of data may either be in an ENDL-type directory such as dir name 1 or in the
form of an endl.asc file, as given by lib name 1, and analogously for the second data set.

For example, a common use of endep diff would be to compare a new set of energy de-
positions with the corresponding current ENDL data. Because the output of endep.script
includes a lib.new file in endl.asc format, a natural way to compare this with ENDL data,
e.g., for lithium 6, is to run

endep_diff.script -Dir_1 /nds/data/endl/za003006 -Lib_2 lib.new

The default threshold for flagging differences in energy deposition is 1%, but the user
may set a different threshold in an endep.input file. For example, if you want a 2%
threshold, include the lines

&endep_diff_opt

diff_tol = 0.02/

in your endep.input file. Note that the same endep.input file may be used for both the
endep and endep diff codes, basically because the namelists have different identifiers.

The output of endep diff is a file endep diff.log, and the format of this file is as
follows. The results are ordered by reaction (c identifier) and by secondary particle. If the
energy depositions for a data set agree to within the prescribed tolerance, no further data
is printed. Otherwise, the energies of the incident particle for both data sets are given,
along with the energy depositions from the first library. When the relative difference
exceeds the tolerance, the deposition from the second library is also given, as well as the
relative difference.
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2 Discrete two-body reactions

In this section we discuss the calculation of energy depositon to secondary particles for
discrete two-body reactions. Suppose that particles 1 and 2 interact to form paricles x
and y. Let mj denote the mass of particle j for j = 1, 2, x, and y, and let vj be its velocity
in the laboratory frame. Then the kinetic of particle j in the laboratory frame is

Ej =
1

2
mjv

2
j ,

We let W ∗

j denote the excitation level of the j-th particle, and Q0 the contribution of the
mass difference to the energy of the reaction,

Q0 = (m1 + m2 − mx − my)c
2. (1)

If particle 2 is at rest in the laboratory frame, then conservation of energy implies that

E1 + Q = Ex + Ey, (2)

where
Q = Q0 + (W ∗

1 + W ∗

2 ) − (W ∗

x + W ∗

y ).

The kinetic energies Ex and Ey of the particles x and y depend on the angles at which
they are ejected. The endep code calculates the average values of Ex and Ey based on the
probability-density data for the angles (I number = 1 data). Because this data is given
in terms of the center-of-mass frame, we have to make a transformation to laboratory
coordinates before we compute the average. The arguments given here are based on
Newtonian mechanics, so it is assumed that we are dealing with particles that are not
too energetic. We shall concentrate our attention on Ex since by a choice of the labels x
and y, this represents the kinetic energy of either secondary particle.

The following derivation of a formula for Ex in terms of E1 and Q is based on the
reference [1, pp. 91–94]. The plan of attack is to transform to center-of-mass coordinates
and work out the kinematics there, and then transform back to the laboratory frame. We
use primes to denote quantities in center-of-mass coordinates. Thus, if V0 denotes the
velocity of the center of mass,

V0 =
m1v1 + m2v2

m1 + m2

, (3)

then v′1 = v1 − V0, etc. It follows from conservation of momentum that

m1v
′

1 = −m2v
′

2,

and from this we may derive the relations

v′1 =
m2

m1 + m2

(v′1 − v′2) and v′2 =
−m1

m1 + m2

(v′1 − v′2). (4)

These relations are useful because they represent v′1 and v′2 in terms of

v′1 − v′2 = v1 − v2 = v1. (5)
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The same momentum conservation argument applied to the secondary particles shows that

v′x =
my

mx + my
(v′x − v′y) and v′y =

−mx

mx + my
(v′x − v′y). (6)

Let us now consider the consequences of energy conservation in the center-of-mass
system. It follows from the definition (3) of V0 that

m1v
2
1 + m2v

2
2 = (m1 + m2)V

2
0 + m1v

′

1
2 + m2v

′

2
2,

so that E1 in the the energy equation (2) may be replaced by

E1 =
1

2
(m1 + m2)V

2
0 + E′

1 + E′

2.

Likewise, under the assumption that m1 + m2 ≈ mx + my, we may write the right-hand
side of (2) as

Ex + Ey =
1

2
(mx + my)V

2
0 + E′

x + E′

y.

In writing this equation, we have neglected a term equal to

(mx + my)

(

mxvx + myvy

mx + my
− V0

)

V0,

and if this difference is not small relative to Q, we should not be using Newtonian me-
chanics. In this same vein, upon neglecting the difference

1

2
(mx + my − m1 − m2)V

2
0 ,

the energy equation in center-of-mass coordinates takes the form

E′

1 + E′

2 + Q = E′

x + E′

y. (7)

We now perform some algebraic manipulations, using (4) and (6) to derive from (7)
an equation for E′

x in terms of E1. We begin by expressing all of the kinetic energies in
terms of squares of velocity differences,

m1

2

(

m2

m1 + m2

(v′1 − v′2)

)2

+
m2

2

(

m1

m1 + m2

(v′1 − v′2)

)2

+ Q

=
mx

2

(

my

mx + my
(v′x − v′y)

)2

+
my

2

(

mx

mx + my
(v′x − v′y)

)2

.

Upon combining terms and using the relation (5), we find that

m2E1

m1 + m2

+ Q =
mxmy

2(mx + my)
(v′x − v′y)

2.
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Figure 1: The relationship between velocities.

If we again use the first of equations (6), we obtain an expression for E′

x,

E′

x =
mx

2
v′x

2 =

(

my

mx + my

)

(

m2E1

m1 + m2

+ Q

)

. (8)

In order to transform (8) into the laboratory frame, we need a relation between the
velocities vx and v′x depending on the collision angle θ in center-of-mass coordinates. In
order to do this, we use the fact that vx is the vector sum of v′x and the velocity V0 of the
center of mass. See Fig. 1. With the notation that |V0| is the length of V0, we find that

v2
x = v′x

2 + V 2
0 + 2 |v′x| |V0| cos θ.

In (8) we make the approximation that mx + my ≈ m1 + m2. Then, with the notation

α =
m2my

(m1 + m2)2
, β =

my

m1 + m2

, γ =
m1mx

(m1 + m2)2
, (9)

it follows from (3) that we have

Ex = (α + γ)E1 + βQ + 2 {(αE1 + βQ)γE1}
1/2 cos θ. (10)

The library data for the angular distribution (I number = 1 data) is given as the
probability density p(E1, η) with respect to the center-of-mass collision cosine

η = cos θ.

Consequently, in order to calculate the average secondary energy

〈Ex〉 =

∫ 1

−1
Exp(E1, η) dη,

we multiply (10) by p and integrate with respect to η,

〈Ex〉 = (α + γ)E1 + βQ + 2 {(αE1 + βQ)γE1}
1/2
∫ 1

−1
p(E1, η)η dη. (11)
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2.1 The treatment of endothermic reactions near the threshold

At low incident energies the angular distribution of secondary particles is isotropic (with
p(E1, η) = 1/2), so that the integral in (11) vanishes, and we have

〈Ex〉 = (α + γ)E1 + βQ. (12)

For endothermic reactions (Q < 0) and for E1 near the threshold, the arithmetic on the
right-hand side of this equation may lead to the subtraction of nearly equal numbers. In
this circumstance we therefore modify the calculation of 〈Ex〉 as follows.

We begin by computing the threshold, which occurs when the secondary particles have
zero energy in the center-of-mass system. Thus, we set E′

x = 0 and E′

y = 0 in (7) to get
that the threshold is when

E′

1 + E′

2 = −Q.

In terms of laboratory coordinates with a stationary target (v2 = 0), this equation takes
the form

E1 −
1

2
(m1 + m2)V

2
0 = −Q.

We may now use (3) to write the velocity V0 of the center of mass in terms of v1 to get
that the threshold occurs when the incident energy E1 is equal to Ethreshold with Ethreshold

given by

Ethreshold = −

(

m1 + m2

m2

)

Q. (13)

In laboratory coordinates at threshold the secondary particles are both moving at the
velocity of the center of mass. The energy Ex is therefore equal to

Ex =
1

2
mxV 2

0 .

By (3) this is equal to

Ex =
m1mx

(m1 + m2)2
E1,

and at the threshold E1 = Ethreshold we find from (13) that

Ex = −
m1mx

m2(m1 + m2)
Q. (14)

On the basis of these ideas, for an endothernmic reaction when the incident particle
is near threshold and the angular distribution is isotropic, we calculate 〈Ex〉 by using the
formula

〈Ex〉 = (α + γ)(E1 − Ethreshold) −
m1mx

m2(m1 + m2)
Q. (15)

It is easy to show that the two equations, (15) and (12), are mathematically equivalent.
From the point of view of computer arithmetic, however, (15) is much more reliable.
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3 Continuum two-body reactions

In the rest of this note, for reasons of clarity we shall use the notation that mtarg denotes
the mass of the target and that Wtarg is its excitation level. Similarly, we say that myi

and Eyi are the mass and energy of the incident particle and myo and Eyo the mass and
energy of the secondary particle. Furthermore, mres, Eres, and Wres denote, respectively,
the mass, kinetic energy, and excitation level of the residual.

For continuum two-body reactions the endep code works with energy-distribution data
(I number = 4) in the laboratory frame. That is, for a set of incident energies Eyi, we are
given probability densities P (Eyi, Eyo) that the secondary particle has energy Eyo. The
total average energy of the secondary particle corresponding to an incident particle at
energy Eyi is therefore computed by evaluating the integral

〈Eyo〉 =

∫

EyoP (Eyi, Eyo) dEyo. (16)

Here, the limits of integration are the minimum and maximum possible energies for the
secondary particle.

If energy distributions are given for the gammas and if this residual decays only by
gamma emission, then the average gamma energy 〈Eγ〉 is also calculated by using (16). In
that case, the average energy of the residual 〈Eres〉 is obained from energy conservation (2),

〈Eres〉 = E1 + Q − 〈Eyo〉 − 〈Eγ〉. (17)

Also, if the residual nucleus is an alpha or lighter, it is assumed that there is no gamma
emission, and the average energy of the residual is taken to be

〈Eres〉 = E1 + Q − 〈Eyo〉.

3.1 The average excitation energy

We devote the remainder of this section to explain how average gamma and residual
energies are derived when no gamma energy distributions are given.

For continuum two-body reactions the kinematics is treated very much like that of
discrete two-body reactions in the previous section. One difference is that the angular
distribution is now assumed to be isotropic, so that (11) simplifies to (12). The other
difference is that the energy of the reaction Q is an average value, dependent upon the
average excitation energy of the residual nucleus, and both of these quantities are to be
determined.

When the x-particle in (11) plays the rôle of the residual nucleus, then the mass ratios
in (9) take the form

αres =
mtargmyo

(myi + mtarg)2
, βres =

myo

myi + mtarg

, γres =
myimres

(myi + mtarg)2
. (18)

Then, equation (12) provides us with a relation between the average kinetic energy to
the residual 〈Eres〉 and the average energy of the reaction 〈Q〉,

〈Eres〉 = (αres + γres)Eyi + βres〈Q〉. (19)
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In terms of the energy Q0 due to the mass difference (1) and the excitation levels Wtarg

and Wres of the target and residual, the average energy 〈Q〉 of the reaction is given by

〈Q〉 = Q0 + Wtarg − 〈Wres〉. (20)

It therefore follows from energy conservation (2) that for a stationary target we have

Eyi + 〈Q〉 = 〈Eyo〉 + 〈Eres〉. (21)

Upon solving equations (19) and (21) for the unknowns 〈Q〉 and 〈Eres〉, we find that

〈Q〉 =
1

1 − βres

{Eyo + (αres + γres − 1)Eyi}, (22)

and

〈Eres〉 =
1

1 − βres

{(αres + γres − βres)Eyi + βres〈Eyo〉}. (23)

We conclude from (22) and (20) that the average excitation level Wres of the residual is
given by

〈Wres〉 = Q0 + Wtarg −
1

1 − βres

{〈Eyo〉 + (αres + γres − 1)Eyi}. (24)

For continuum decay the order of operations in the endep code is as follows. We
begin by calculating the average energy 〈Eyo〉 of the secondary particle by using the
integral (16). We then use (24) to compute 〈Wres〉, the average excitation level of the
residual. It sometimes happens that this calculation produces a negative result. If there
is no further decay, we set 〈Wres〉 = 0 and endep prints a warning. Otherwise, the endep

code keeps the negative 〈Wres〉 and just prints a warning message. Finally, the average
kinetic energy of the residual is obtained from energy conservation (20) and (21) as

〈Eres〉 = Eyi + Q0 + Wtarg − 〈Wres〉 − 〈Eyo〉. (25)

If there is no further particle emission, the average energy to the gammas, 〈Eγ〉, is
taken to be 〈Eγ〉 = 〈Wres〉. Otherwise, the average kinetic 〈Eres〉 and excitation 〈Wres〉
energies are used in the modelling of the continuum decay process, as described in the
next section.
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4 Continuum decay reactions

The kinematics of continuum decay reactions is derived from that for continuum two-body
reactions. The difference is that the initial unstable nucleus plays the rôle of the incident
particle, and the target is null. This unstable nucleus may now be in an excited state,
either because the previous reaction was inelastic scattering to some excitation level or
because we had a continuum reaction leading to an average excitation as given by (24).
Note that the reactions discussed here include those like (n, 2nγ), in which there is more
than one secondary particle of the same kind. The special considerations required for such
reactions are spelled out at the end of this section.

Let us introduce the notation that mprev denotes the mass of the initial unstable
nucleus and that Eprev and Wprev are, respectively, its kinetic energy and excitation level.
We again use the integral (16) to calculate the average energy 〈Eyo〉 of the secondary
particle emitted at this stage.

As with continuum 2-body reactions, the calculation of the average kinetic energy of
the final residual depends on whether or not gamma energy distributions are given. If they
are given, then the average gamma energy is obtained from the integral (16), and energy
balance is used to determine the average energy of the stable residual nucleus. Likewise,
if the residual is an alpha or lighter, we assume that there is no gamma emission, and the
average kinetic energy of the residual is obained from energy balance.

If gamma energy distributions are not given and if the residual is heavier than an
alpha, then as in Section 3.1 we use the reaction kinematics to determine the average
kinetic energy and excitation level for the residual at each step of the decay process.
Thus, for one decay step the mass ratios (18) take the form

αres = 0, βres =
myo

mprev

, γres =
mres

mprev

.

The equation for the average excitation level of the residual (24) simplifies to

〈Wres〉 = Q0 + Wprev −
1

1 − βres

{〈Eyo〉 + (γres − 1)〈Eprev〉},

where Q0 is the result of the mass difference for this decay step,

Q0 = (mprev − myo − mres)c
2.

What we do if the computed value of 〈Wres〉 comes out to be negative depends upon
whether or not this is the final decay step. If this is the final decay process and the
computed value of 〈Wres〉 is negative, we replace it by zero and print a warning message.
For intermediate decay steps we keep the negative average excitation and print a warning
to indicate that the model may be wrong and that the decay steps probably ought to be
done in a different order.

The equation (25) for the average kinetic energy of the residual becomes

〈Eres〉 = 〈Eprev〉 + 〈Wprev〉 + Q0 − 〈Wres〉 − 〈Eyo〉.

If this is the final particle emission, the average gamma energy is taken to be 〈Eγ〉 = 〈Wres〉.
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4.1 Secondary particles with multiplicity greater than 1

The differences in the treatment of secondary particles with multiplicity exceeding 1, e.g.,
(n, 2nγ) reactions, derive from the fact that the energy distribution data is the average
for the two particles. Note also that the output of endep includes the particle multiplicity
in the average energy deposition. That is, the output file contains pairs

(Eyi, µ〈Eyo〉)

where Eyi is the energy of the incident particle, 〈Eyo〉 is the average energy of the secondary
particle yo as computed from the integral (16), and µ is its multiplicity.

Another difference arises from the fact that some decision has to be made about how
to apportion the energy between the multiple secondary particles. For the sake of clarity,
I describe how endep handles (n, 2nγ) reactions. This is treated as a 2-step reaction, with
the first step being continuum inelastic scattering as described in Section 3. The second
step is emission of the second neutron by continuum decay as discussed above. The impor-
tant point to note is that the same average neutron energy, 〈Eyo〉 from the integral (16),
is used in both processes. If the model were changed, for example by apportioning more
energy to the first neutron emitted than to the second, the average energies 〈Eres〉 and
〈Eγ〉 would change, but the sum 〈Eres〉 + 〈Eγ〉 would stay constant.
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5 Special reactions

Several reactions require special treatment in endep. These include fission, some gamma-
production reactions, and the breakup of deuterium, carbon, and beryllium. Endothermic
reactions on natural targets also require special handling. We discuss these cases here.

5.1 Gammas from neutron-capture reactions

For neutron-capture reations with no given gamma data, the endep code uses conservation
of energy and momentum to determine the average kinetic and excitation energy of the
residual nucleus. This average excitation energy is output as the average energy of the
gammas. A subsequent application of the nxgam code may be used to model the gamma
energy distribution. See the references [4] and [6].

5.2 Gammas from level excitation

For reactions such as inelastic scattering with the residual at a specific excitation level,
this level is given in the header of the angular-distribution file for the scattered particle.
In this case, one of the output files from endep simply contains pairs

(Eyi, Eγ)

where Eyi is the energy of the incident particle, and Eγ is the excitation level of the
residual nucleus.

5.3 Fission and reactions with multiple gammas

For fission reactions the multiplicity µ of the neutrons produced is given as a function
of the energy Eyi of the incident neutron (I number = 7 data). The probability density
P (Eyi, Eyo) that an incident neutron with energy Eyi will produce a fission neutron with
energy Eyo is also given. In this case output file from endep for average fission neutron
energy contains the pairs

(Eyi, µ(Eyi)〈Eyo〉), (26)

where 〈Eyo〉 is the average energy of a single fission neutron as calculated from the inte-
gral (16). Note that the energy of the delayed fission neutrons is not included.

For some reactions, e. g., fission, the energy distribution of the gammas is given, along
with their multiplicity as a function of the energy of the incident particle (I number = 9
data). In these cases the output file from endep for average gamma energy includes the
multiplicity as in (26).

5.4 Breakup of deuterium

The 2H(n, 2n) 1H reaction is treated by endep as follows. First, the average energy of the
secondary proton is computed from its energy distribution by evaluating the integral (16).
Then the total average energy of the two neutrons is derived from energy balance.
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5.5 Breakup of beryllium 7

For the 7Be (n, α) 4He reaction endep calculates the energy available, namely, the sum of
the energy from the mass difference plus the energy of the incident neutron. It apportions
this energy equally between the two alphas and writes two files, one for the alpha as
secondary particle (yo = 6) and one for the alpha as residual nucleus (yo = 16).

5.6 Breakup of beryllium 9

In ENDL the breakup of beryllium 9 is listed as an (n, 2n) reaction (c ID = 12), giving
9Be (n, 2n) 8Be, and endep produces two output files, one for the total average energy
of the two neutrons (yo = 1) and one for the total average energy of the two alphas as
residual (yo = 16). It might make more sense to list this reaction as 9Be (n, 2nα) 4He with
the identifier c ID = 33.

This is the only ENDL reaction in which the data are joint energy-angle distributions.
Specifically, for given energy of the incident neutron Eyi we have the probability distri-
bution p(Eyi, µ) of the direction cosine µ of the alphas, and for given Eyi and µ we have
the probability distribution P (Eyi, µ,Eyo) of the energy Eyo of the alphas. Therefore, the
average alpha energy is obtained by calculating the double integral

〈Eyo〉 =

∫ 1

−1

(
∫

EyoP (Eyi, µ,Eyo) dEyo

)

p(Eyi, µ) dµ. (27)

The ouput file of average alpha energies contains the pairs

(Eyi, 2〈Eyo〉).

The average neutron energies are then obtained from energy balance. The ENDL library
does contain joint energy-angle distributions for the secondary neutrons. Therefore, endep
also calculates the double integrals (27) for this data and checks for consistency of the
results.

5.7 Breakup of carbon 12

For the 12C (n, n′2α) 4He reaction the first step is inelastic scattering, with the residual
either at a discrete excitation level or treated as an average of a continuum. In the case
of discrete excitation we are given angular distributions and the excitation level, and we
use (11) based on discrete two-body kinematics to calculate the average energy of the
secondary neutron. For the continuum we are given energy distributions, and we use the
integral (16) to calculate the average secondary neutron energy.

The remaining energy is split equally between the three alphas. The endep code writes
a file of pairs

(Eyi, 2〈Eyo〉)

for two of the alphas (yo = 6), and it writes a file of pairs

(Eyi, 〈Eyo〉)
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for the residual alpha (yo = 16).
Note that ENDL also contains energy distributions for both types of alphas. The code

therefore checks for consistency of the average energies.

5.8 Mass-difference energies for natural targets

For isotopic targets we may look up the masses of the particles in the bdfls mass tables
and obtain the energy due to the mass difference by calculating the difference (1). For
reactions on natural targets the endep code reads the mass-difference energy from the
header of the ENDL data file. For scattering reactions this number is, of course, zero. But
it means different things for exothermic and endothermic reactions.

For exothermic reactions on natural targets the mass-difference energy in the header
of an ENDL data file is simply a weighted average, according to the natural isotopic abun-
dances.

For endothermic reactions on a natural target there is no single number for the mass-
difference energy, because different isotopes have different thresholds. Consequently, the
weighting depends on which isotopes are above threshold, and strictly speaking, the mass-
difference energy is a step function of the energy of the incident particle. Specifically,
there is a jump discontinuity corresponding to the energy threshold for each isotope in
the natural mixture. The way that these reactions are handled in ENDL is that the mass-
difference energy value given in the file header corresponds to the lowest natural threshold.
That is, it is the mass difference for the natural isotope which is the first to react, and
the reason for this choice is that it puts the threshold at the proper energy. This has the
consequence, however, that for incident particles at higher energies, the energies computed
by endep for the gammas and the residual may well come out negative. The prime example
of this difficulty in ENDL is natural zinc, and for some reactions the situation is so bad that
the gamma and residual average-energy files are not included in the library.
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