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Symbolic Implicit Monte Carlo radiation

transport in the difference formulation: a

piecewise constant discretization *
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Abstract

The equations of radiation transport for thermal photons are notoriously diffi-
cult to solve in thick media without resorting to asymptotic approximations such
as the diffusion limit. One source of this difficulty is that in thick, absorbing me-
dia, thermal emission is almost completely balanced by strong absorption. A new
formulation for thermal radiation transport, called the difference formulation, was
recently introduced in order to remove the stiff balance between emission and ab-
sorption. In the new formulation, thermal emission is replaced by derivative terms
that become small in thick media. It was proposed that the difficulties of solving
the transport equation in thick media would be ameliorated by the difference for-
mulation, while preserving full rigor and accuracy of the transport solution in the
streaming limit. In this paper, the transport equation is solved by the Symbolic
Implicit Monte Carlo method and comparisons are made between the standard for-
mulation and the difference formulation. The method was easily adapted to the
derivative source terms of the difference formulation, and a remarkable reduction in
noise was obtained when the difference formulation is applied to problems involving
thick media.
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1 Introduction

The transport of thermal photons in thick media is of sufficient importance
that substantial effort has been expended in developing both deterministic
[1-4] and Monte Carlo [5] methods for its solution. The difficulties associated
with thick media have been severe enough to necessitate solving asymptotic
approximations, such as the Eddington and diffusion approximations [6], in-
stead of solving the full transport equation.

Asymptotic methods do give the right solution to the transport equation in
uniformly thick media, like stellar interiors. Nevertheless, in many problems
of interest the medium is a mixture of thick and thin regions; moreover, some
regions of interest may be thin for some radiation frequencies and thick for
others.

Although a lot of progress has been made in numerical calculations for such
complicated systems using asymptotic methods, they suffer from several de-
fects. One such defect is an unphysical energy propagation rate when the
method is applied outside its proper domain. This led to the development
of ad hoc corrections such as flux limiters [7]. Another defect is that asymp-
totic methods are unable to satisfy correct boundary conditions. Time hon-
ored “fixes” are the Marshak [8] and Mark [9] boundary conditions, but these
incorrect boundary conditions distort ubiquitous boundary layers. More im-
portantly, it is difficult to estimate or measure the errors incurred by the
approximations. Only an accurate solution of the transport equation is able
to eliminate the above defects.

Several hurdles have stood in the way of producing accurate Monte Carlo
solutions of the transport equation in thick media. The first is the selection
of a Monte Carlo technique that is numerically stable and provides correct
treatment of the stiff coupling between the radiation and the material in the
thick limit. Several authors have shown that the radiation matter coupling
is properly treated by the Symbolic Implicit Monte Carlo method (SIMC)
[10,11], producing a correct implicit solution of the radiation field and the
material temperature at the end of a time step [12], while effective scattering
techniques [5,13,14] possess a significant deficiency in this regard.

A second hurdle has been the very significant noise problem, or the equivalent
problem of computational efficiency, when Monte Carlo methods are pressed
into service for thick systems. The energy is emitted in a zone uniformly,
but only particles born within a few mean free paths of a zone boundary
have any chance of contributing to the flux across the boundary. Most of
the emitted particles are absorbed within the same zone and serve only to
compute the equilibrium values of the radiation intensity and temperature in



that zone. This situation for the Monte Carlo method, as applied to thermal
photon transport, has been a source of frustration for a long time. The local
equilibrium value of the radiation intensity in the thick limit is, of course,
the black-body field for the given local temperature. One would prefer not to
waste a lot of processing power computing it.

In earlier work [16], some of the authors proposed a new formulation for the
transport of thermal photons, referred to as the difference formulation. In this
scheme, the transport equation is transformed by considering a new field that
is the deviation of the local intensity from the local equilibrium intensity. The
result of the transformation is to remove the thermal emission source from
the transport equation, replacing it with derivative sources that are small in
the thick limit. A reasonable conjecture would be that, in the Monte Carlo
solution for the transport of the difference field, a significant gain in the noise
figure would result.

In this paper, we demonstrate the validity of this conjecture for the transport
of thermal photons. We find that, by employing the difference formulation in
a Monte Carlo environment, the effective gain in computational efficiency as
compared to the standard formulation increases quadratically with the optical
thickness of the problem. This advantage in computational efficiency appears
in all portions of a problem where the temperature varies relatively smoothly
in space and time and, thereby, the smallness of the source terms is preserved.
We describe our Monte Carlo implementation in slab geometry, comparing
the implementation, accuracy and performance for the two formulations for
transport.

In optically thick regions, numerical transport methods are usually applied
with zone sizes that are much larger than the mean free path of a photon.
A low-order discretization, that keeps the temperature and the opacity of the
medium constant in each cell, does not yield the correct diffusion limit under
such conditions. This “teleportation” effect was discussed in a previous pa-
per [14]. Tts deleterious effect can be reduced by using a heurisitic known as
tilting [15]. Methods that produce a self-consistent solution in the diffusion
limit have generated significant interest in recent years. Deterministic trans-
port techniques which have the diffusion limit [17,18] necessarily go beyond
the approximation where the zones have constant values of density, opacity
and temperature. In this paper, we restrict ourselves to piecewise constant
treatment of the material temperature and therefore we would not obtain the
proper diffusion limit if the zone sizes were much larger than the photon mean
free path. In the present paper we use fine zones and sidestep the issue. We
intend to address this deficiency in future work using the methods of [19].

The rest of this paper is organized as follows: In Sections 2 and 3 we briefly
review both the standard and the difference formulation for thermal photon



transport in slab geometry, without scattering. A more detailed description
of the difference formulation, including scattering, can be found in [16]. In
Section 4 we describe the SIMC method employed with a focus on how the
implementation differs for the two formulations of transport. Correct frequency
sampling of the source terms in the difference formulation requires an extension
of the relatively mature techniques used to sample the Planck spectrum [20].
This is discussed in the Appendix. We examine the results of test problems
that serve as our basis of comparison for the two transport formulations in
Section 5. We end with a discussion in Section 6.

2 Radiation transport in local thermodynamic equilibrium, (LTE)

We review now the time and frequency dependent transport of photons in
LTE, without physical scattering, in the standard formulation as well as in
the difference formulation. For simplicity we restrict the derivation to a static
medium and slab geometry. Scattering is treated identically in the two for-
mulations and we are, therefore, less interested in examining problems with
scattering. We examine problems with gray opacities and, in addition, simple
frequency dependent opacities where there is a precipitous drop in opacity at
higher frequencies. We also consider a temperature dependent specific heat,
effectively linearizing the problem, in order to compare our Monte Carlo treat-
ment of the difference formulation to the available analytic solutions [21].

2.1 Traditional formulation

The transport equation describes the propagation of the radiation field in
terms of the specific intensity, 1(x,t;v;2), where x,t are the space and time
variables, v is the radiation frequency and the unit vector €2 points in the
direction of propagation. The specific intensity is expressed, as usual, in terms
of [ power / (unit area X unit solid angle x unit frequency interval) |. Using
polar coordinates for the direction of propagation, €2, the specific intensity can
be written as I(x,t; v; 0, ¢) with the differential of the solid angle dQ2 = dudo,
where p = cosf.

In slab geometry the radiation field is symmetric around the direction per-
pendicular to the slab, chosen as the positive x direction. The radiation field
is then independent of ¢, and we transform the remaining angular coordinate
from 0 to p = cosf, defining I(z,t;v;p) = I(x,t;v;cos0, @), assumed to be
independent of ¢.

The transport equation, in slab geometry and LTE, is then
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where B(v,T) is the thermal (Planck) distribution at the material temper-
ature, T'(x,t), and c is the speed of light. The absorption coefficient, o/, is
assumed to be corrected for stimulated emission. The specific intensity is re-
lated to the photon number distribution function f(x,t;v;u) by

Iz, ;v p) = chvf(z, tivyp) (2)

/

where hv is the photon energy. In Eq. (1), all the variables, I, ¢/, and B, are

functions of the independent variables, x,¢; v; u and/or T'(z,t). In the follow-
ing, the independent variables will mostly be suppressed.

The emission function,

2hv3
2

B(v,T) = (ehl’/kT — 1)71 ) (3)

c

can be expressed in terms of a “reduced” frequency distribution function,
b(v, T),

caT?

™

B(v,T) = b(v,T) (4)

where a is the radiation constant. The advantages of using the reduced fre-
quency distribution function are that the strong temperature dependence of
thermal emission is factored out by the T* term, and that its frequency integral
is independent of temperature,

7dlj b(v,T)=1 . (5)

In slab geometry, the interaction of radiation with matter is expressed by the
conservation law

aEjmolt
ot

=2 7odl/ jduaé[[ - B(v,T)|+G (6)

where FE,,.; is the energy per unit volume of the material and G is a volume
source of energy. The change in energy of the material is related to the change



in temperature by its density times the specific heat, pc,, which may itself be
a function of temperature

dEya = peodT . (7)

In general, the resulting system of equations is non-linear with the material
properties such as opacity and specific heat being represented in tabular form.
For real problems of interest numerical solution has been our only viable ap-
proach.

3 The difference formulation

Noting that the solution to the transport equation approaches B(v, T'(x,t)) in
the limiting case of a thick system, and that the term I — B occurs in both
the transport equation and the equation for energy conservation, we define a
difference intensity

D(x,t;v; Q) := I(x,t;v;Q) — B(v, T(x,t)) (8)

and, analogously, in slab geometry

D(x,t;v;p) == I(x,t;v; ) — B(v, T(z,1)) (9)
We now subtract (1/c)(0B/0t) + (0B /0x) from both sides of Eq. (1),

10D(z, t;v; ) N OD(x,t;v; )

. 5 o B = —o, (v, T(z,t))D(x,t;v; )
10B(v,T(x,t)) 0B(v,T(x,t))
—— — 10
c ot a Ox ’ (10)
identifying the last two terms as sources for the transformed equation.
The interaction of radiation with matter is transformed to
8E 00 1
a;nat =2 /dl/ /duale +G . (11)
0o 1

Let us compare now Eq. (1) to Eq. (10). The propagation and absorption
terms of the I field and the D field are the same. In contrast, the source term
0! B has been traded for the space-time derivative of B. In a thick system with



smoothly varying temperatures, the new source terms as well as D are small.
The transformed energy equation expressed in terms of the difference field, D,
removes the stiff balance between emission and absorption.

An additional impact on numerical solutions is the fact that the emission
term for the standard formulation contains a factor of ¢/, adding significant
complexity for real materials that have a fine structure representing absorption
lines. Because of this, it can be quite difficult to sample the emission spectrum
without washing out this level of detail. In comparison, the source terms for
the difference formulation are smooth and are accurately sampled using robust
methods described in the Appendix. This lack of dependence of the source
terms upon material properties makes implementing a code that treats spectral
features accurately far less cumbersome, with spectral details appearing only
in the absorption terms as particles are tracked and scored.

4 Symbolic Implicit Monte Carlo method

We have extended the Symbolic Implicit Monte Carlo (SIMC) method in order
to develop a Monte Carlo solution for the difference formulation. Details of
the SIMC method are described in [10] and [11]. One crucial component of
SIMC is the factorization of the Planck function, B = b(v,T)(caT?/47), in
Egs. (4) and (5). It allows an implicit treatment of the strongly varying 74
term in the transport equation. The b(v,T') term, with a frequency integral
that is independent of the temperature, determines the frequency distribution
of the sources.

In the discussion below, we will sketch the implementation of the SIMC
method for the standard formulation as well as for the difference formula-
tion, emphasizing their differences. Since our goal is to understand the basic
advantage that the difference formulation offers in thick systems, we use an
implementation without weight vectors in frequency space. In our Monte Carlo
implementation of the two transport formulations we use a piecewise constant
treatment of the material temperature, constant as a function of space within
each zone and within each time step. As noted in the introduction, this treat-
ment must be extended if we are to obtain the proper diffusion limit for zones
that are optically thick.

In the standard formulation, the strength of thermal emission within a time
step At in zone 7, integrated over frequency, is approximated by

Ax;AteaT} (tg + At) < ol (Ti(to)) > (12)

where Ax; is the volume of the zone, T;(to + At) is the unknown temperature



of the zone at the end of the time step, T;(to) is the known temperature of the
zone at the start of the time step, and < o}(T;(ty)) > is the Planck average of
the absorption cross section given by,

< 0,(Ti(to)) > = /dV 0,(Ti(to))b(v, Ti(to)) - (13)

In the SIMC implementation, thermal emission is handled by emitting parti-
cles containing an unknown factor, Ti*(ty + At); the latter is solved for and
substituted at the end of the time step. The source term is uniformly dis-
tributed within the zone, across the time step, and in the direction cosine, .
The frequency distribution of thermal emission in the zone is given by

0;(Ti(t0))b(v, Ti(to))
< 0;(Ti(to)) >

(14)

For a non-trivial cross section, the distribution function described above is
constructed and tabulated for each zone at the start of each time step.

In the difference formulation the source terms are more complicated, but offer
the advantage of independence from the detailed optical properties of the
material. The first complication is that the source is not positive definite,
the solution for the difference field itself only being bounded from below by
—B(v,T(x,t)). There are two source components,

_10B(v,T(z,t))  0B(v,T(x,1))
c ot a Ox ’

(15)

each with different spatial and angular properties. With hindsight, we decom-
pose the sources appropriately for the SIMC treatment

10B OB _ 0B | 10T%(x,t) M@T“(az,t)
Ox

cot  Mor "ot | ot

(16)

We recognize that the frequency dependence of the emission is determined by
OB /0T* only. We will use a discretized form of the derivative for our purposes.
Accordingly, we define the distribution function

T14 b(V7 Tl) — T24 b(l/, T2)
i T ’

f[vahT?] - (17>

that has unit integral over frequency. The temperatures 77 and 15 are either
the temperatures at the beginning and end of the time step, or are the tem-
peratures on the left and right hand side of a zone interface. It yields the



reduced Planck distribution, b(v,T'), when one of the temperatures is zero. It
must be treated with care when the difference in temperatures is small if a
correct spectrum is to be obtained. We discuss this, along with our sampling
techniques for f[v, T}, T3], in the Appendix.

In finite difference form, the 9B /0t component of the source terms within a
time step At is

ala; [T} (to)b(v, Ti(to)) — T (to + At)b(v, Ti(to + At)))]
= alx; f[v, T(t), T(to + AB)|[TH(to) — Tt + AL)] (18)

It is distributed uniformly in u, spatially within the zone, and temporally
across the time step. We do not have the temperature at the end of the time
step available when frequency sampling is done, so an extrapolated value is

used in flv, T'(to), T (to + At)].

The 0B/dx component of the source is zero everywhere except on zone bound-
aries due to the piecewise constant treatment of the material temperature. The
emission by this term within a time step At is

u AL THOb, T(0) = T (0b(n (1)) (19)

where T; refers to the temperature on the left side of an interface and 7, refers
to the temperature on the right. Fixed temperature boundary conditions are
handled by using the appropriately prescribed temperature. In finite difference
form, it is approximated as

n At [Tt + At) = T (ko + A0)] fl, Ti(to), To(to)] (20)

Particles are sampled in balanced pairs traveling in the 4+u directions with
the frequency distribution function, f[v, T}, T,], evaluated at the beginning of
the time step. A value extrapolated to the end of the time step could be used.
The T* “strength” terms are evaluated at the end of the time step in order to
preserve stability.

The non-linear system to solve in order to perform the temperature update is
obtained by integrating Eq. (6) for the standard formulation, or Eq. (11) for
the difference formulation, taking advantage of Eq. (7) to relate the change in
energy to the change in temperature. The scoring of thermally emitted parti-
cles yields a banded matrix in the space of zone indices where the bandwidth
is controlled by cAt, and also by the opacity because we removed particles



that had been attenuated to less than 107% times their birth weight. The non-
linear system is solved by Newton - Raphson iteration after the Monte Carlo
particles reach census. The actual value of Ti(to + At) is then substituted,
thereby converting all census particles to known weights in order to prepare
for the next time step. The basic scheme is the same for both the standard
and the difference formulations. Only the details of the scoring function are
different. In the standard formulation, the unknown factor is Ti}(to + At). In
the difference formulation, the unknown factors are (T (to) — T (to + At)),
and (T} (to + At) — T (to + At)), for particles produced by the B/t and the
OB /dz source terms, respectively. !

5 Test problems

A variety of test problems have been examined in order to evaluate the com-
putational efficiency and accuracy of the difference formulation, employing the
SIMC Monte Carlo method described above. Our goal is to analyze some sim-
ple situations that indicate the potential impact of the difference formulation
in more complex physics environments. The key issues are accuracy and effi-
ciency for both thick and thin media — specifically the frequent occurrence of
media which are thick at one frequency while being thin at others. In addition
to comparing the Monte Carlo solution of the two formulations of transport,
we compare them to semi-analytic solutions where they are available.

5.1 Behavior of a finite slab heated from the outside

The most basic test of a thermal transport algorithm is whether it correctly
approaches the steady state solution for a finite slab immersed in a heat bath
with different temperatures on either side. At the coarsest level, in thick media,
the steady state solution of the material temperature, raised to the fourth
power, is a straight line when plotted as a function of optical depth. Deviations
from a straight line are indicative of boundary layers when they occur within a
mean free path or so of a surface, but otherwise they indicate serious problems
in the numerical solution. Teleportation errors result in a wrong slope and
cause curvature in the interior solution [14]; this is the reason why we limit
zone thickness to one mean free path for our piecewise constant treatment of
the material temperature.

! In the B/0t term, the temperature is handled in the form (T} (to) — T} (to + At)),
both to simplify the code and to avoid the noise and possible numerical difficulties
associated with two independent particle weights when tracking Monte Carlo par-
ticles.

10



The time dependent approach to steady state offers the opportunity to check
the correctness of the implementation of interior source terms as well as initial
and boundary conditions. That the steady-state temperature is independent
of time step, reflecting implicit behavior of the time integration, can also be
checked. When the spectrum of the radiation field is examined, even for a gray
opacity, the correctness of the frequency sampling algorithm can be checked.
Agreement between the standard and difference formulation is non-trivial due
to the different nature of their source terms. A detailed description of all the
checks described above is beyond the scope of this paper, but they have been
carried out.

In the presentation of our computational results below, we provide a clear
demonstration of rigorous agreement between the two formulations for trans-
port, in terms of their approach to steady state, along with a measure of
the increase in computational efficiency for the difference formulation. The
magnitude of this increase in computational efficiency, in the form of greatly
reduced Monte Carlo noise as the optical thickness of the problem is increased,
is somewhat surprising even to the authors who were prospecting for it.

In the first set of simulations we consider a finite slab heated from the left side,
with an open boundary on the right, allowing the radiation flowing through
the slab to enter free space. The slab is composed of a uniform, static material
having a frequency-independent (gray) opacity. We calculate the time depen-
dence of the temperature and of the radiation field after a 1 keV black-body
source on the left side of the slab is turned on at time ¢t = 0. ( 1 keV ~ 1.2
107 °K.)

During the time dependent execution of the problem, a thermal wave, also
known as a Marshak wave, sweeps the problem domain, and the solution then
approaches steady state. Under conditions where the Monte Carlo portion of
the code dominates execution time, we compare the solutions provided by the
two formulations. The relative noise for identical problem run times provides
a measure of computational efficiency.

For four instances of this problem, the slab is composed of a uniform material
having a frequency independent (gray) opacity of 0.1, 1, 10, and 100 mean
free paths per cm, respectively. The specific heat of the material is a constant
0.1 jerk/(keV cm?), where jerk is an energy umit (1 jerk = 106 ergs), and
temperature is measured in energy units of kT = 1 keV. The slab is initially
at a temperature of 0.01 keV, with the radiation field being a Planckian in
equilibrium with this temperature. The slab is 10 cm thick, so the four opaci-
ties correspond to total optical depths of 1, 10, 100 and 1000 mean free paths.
All four problems used a time step of 0.2 sh, where 1 sh = 10~® sec. The
problems 1 and 10 mean free paths thick were run to 20 sh to equilibrate.
The problem 100 mean free paths thick was run to 40 sh in order to approach
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steady state. The problem 1000 mean free paths moved very slowly due to
the diffusive nature of the solution, requiring 320 sh in order to suitably ap-
proach steady state. The problems 1 and 10 mean free paths thick employed
20 zones, while the thicker problems employed zones one mean free path thick
in order to prevent teleportation error from influencing the results and to pre-
vent anomalous performance results for the difference formulation. Zones of
equal thickness were used everywhere. Geometric zoning has a role in reducing
computational cost only if a piecewise linear treatment of material properties
is available to keep teleportation error under control [19].

A time step size of 0.2 sh is enough time for a photon to travel 6 times the
thickness of the slab, reflecting on the stability of the method. Relaxing the
need for implicit treatment of the source terms was one of the hopes of the
authors, given that implicit treatment requires the solution of a non-linear
system of equations for each time step. Our experiences in this regard, doc-
umented in [22], were made even more difficult by the 7% term for thermal
emission. As a result, explicit treatment of the dB/0x source terms was aban-
doned. It may be worth revisiting in more complex physics applications where
the time step size is limited for reasons outside of transport physics.

Note that the Monte Carlo solution for the two transport formulations have
entirely different requirements for spatial importance sampling if uniform sta-
tistical noise, as a function of position, is to be obtained. In the standard
formulation most of the computational effort is spent computing the balance
between emission and absorption that produces the local equilibrium black-
body field. As a result, a scheme that samples particles with uniform density in
space produces a relatively flat statistical noise profile across the slab. During
each time step, the number of source particles born in each zone is propor-
tional to the thickness of the zone. The statistical properties of the Monte
Carlo solution for the difference formulation are in sharp contrast to this. For
thicker problems the statistical noise for the difference formulation is small
near the hot side and increases rapidly towards the cold boundary. Suitable
importance sampling flattens out this growth in noise. An exposition of this
topic is beyond the scope of this paper. In our tests we sampled source particles
uniformly in space.

In the examples shown in this paper, the unit of source sampling for the dif-
ference formulation is one 0B /0t particle and one 0B/0x particle pair, for
each zone or zone interface, respectively. We have not attempted to tune the
ratio between 0B/0t and 0B/0x source particles, nor have we attempted to
tune the relative importance of source sampling across the volume of the prob-
lem. In the standard formulation the unit of source sampling is one thermally
emitted particle per zone.

In Figure 1 (a) we show the steady-state solution for the material temperature

12



as a function of position in the slab that is one mean free path thick. The
average of 100 randomly seeded runs using the standard formulation, and the
difference formulation, is shown. The two formulations are in good agreement.
The standard deviation of the results for the standard formulation as well
as for the difference formulation, both multiplied by 400, are plotted. The
number of Monte Carlo source particles was selected to produce equal run
times for the two formulations and was high enough that the cost of Monte
Carlo transport dominated execution time. The relative performance of the
methods is then the ratio of the squares of the their standard deviations. There
is a small advantage in favor of the difference formulation, except at the very
right hand side of the slab. Note that the optical thickness of each zone is only
0.05 optical depths.

In Figure 1 (b) we show the results for a slab that is 10 mean free paths thick.
Again, we obtain excellent agreement between the two formulations, compar-
ing the equilibrium material temperature. In order to display the standard
deviation of the temperature for the two formulations on the same plot, we
apply a scale factor of 100 for the standard formulation and 1000 for the dif-
ference formulation. The trend of growth for the standard deviation for the
difference formulation, as the temperature gradient increases in the slab from
left to right, is becoming apparent.

In Figure 1 (c) we show the results for a slab that is 100 mean free paths thick.
There are 100 zones in this problem in order to minimize teleportation error,
with every fifth point plotted using a symbol. The other points are included in
the solid lines drawn. The growth in noise for the standard formulation is now
becoming visible in the plot. We apply a scale factor of 20 to see the standard
deviation for the standard formulation. The growth of the standard deviation
for the difference formulation as one traverses the slab from left to right is
now quite clear, but the overall computational advantage for the difference
formulation has increased with optical depth.

In Figure 1 (d) we show the results for a slab that is 1000 mean free paths
thick. There are 1000 zones in this problem, a requirement to avoid signifi-
cant teleportation error, with every 50’th zone plotted using a symbol. The
disagreement between the two formulations appearing towards the left side
of the slab are due to statistical fluctuations in the standard formulation.
The computational advantage of the difference formulation has continued to
increase with opacity.

The reader may note that the results for the difference formulation have the
appearance of smooth curves, regardless of the optical thickness of the prob-
lem. The 1/v/N noise behavior that is typical of a Monte Carlo solution is
present, it is just that the amplitude of the noise is too small to resolve in the
figure for the cases we have illustrated.
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Evidence of the scaling behavior of the computational advantage of the differ-
ence formulation is shown in Figure 2. The figure illustrates the computational
advantage of the difference formulation when calculating the material temper-
ature, as a function of position, for four optical thicknesses. The computational
advantage scales roughly as the square of the optical depth of the problem.

In Figure 3 we show the penetration of a thermal wave into a slab 1000 mean
free paths thick at 40 sh, for a single problem run with the same parameters
as in Figure 1 (d). The solution shown is fully converged as a function of time
step and zone size. This figure visibly illustrates the gains that the difference
formulation provides.

5.2 Comparison to analytic diffusion solution for a linearized problem

In order to check the correctness of our numerical implementation, we have
compared our results with the diffusion solution appearing in [21]. This solu-
tion requires that the material energy take the form

T4
Erat = QT (21>

or, equivalently, that the specific heat take the form

OF, .,
mat _ T3
or Y

(22)

where « is a specified constant. This form for the material energy removes the
non-linearity, 7%, that otherwise prevents an analytic solution. The resulting
analytic solution can then be used to check for the correct convergent behavior
in our numerical simulation. The behavior of the specific heat at T" = 0,
however, makes the numerical calculation quite fragile unless the code itself
is transformed to handle things in the linearized form. To some extent, this
defeats the purpose of checking the original code, much of which had to be
modified to accommodate the linearized form.

For this problem « and the absorption cross section were chosen so that the
values in the tables of analytical results appearing in [21] could be used di-
rectly. In Figure 4 we plot the material temperature produced by our Monte
Carlo solution of the standard and difference formulations, along with data
from Su and Olson’s analytical solution corresponding to a late time, their
7 = 10. We obtain good agreement where analytical data are available. This
is expected because for 7 = 10 the diffusion approximation assumed by Su
and Olson is valid. In Figure 5 we plot the material temperature for the same
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problem along with data from Su and Olson’s analytical solution for 7 = .01.
Not surprisingly, there is sharp disagreement between the diffusion solution
and the fully overlapped and converged Monte Carlo transport solutions for
the standard and the difference formulations. Here the fundamental limitation
is the speed of light; it is fully respected by the transport solution but ignored
by the diffusion solution, unless ad-hoc corrections are used.

5.8 Time dependent Marshak wave problem, with a non-trivial opacity

Our Monte Carlo solutions of the standard and difference formulations of
transport fully implement the details of the thermal frequency spectrum; the
spectral properties of the derivative sources make the agreement between the
two formulations non-trivial even in the case of a gray opacity. Once the
spectral sampling of the source terms in the difference formulation is done
correctly, as described in the Appendix, there is no more to be done for the
correct treatment of a frequency dependent opacity in the difference formula-
tion other than to use the correct absorption cross section for the given Monte
Carlo particle. The accuracy of the treatment of the frequency dependent cross
section is as good as the cross section itself.

The emission term for the standard formulation, on the other hand, appears
as o), B. In the most general case, it must be numerically integrated across the
frequency group structure in each zone at the start of each time step. This
requirement provides another place where numerical errors must be controlled
in the implementation of the standard formulation.

We now turn to a relatively simple frequency dependent opacity: one that is
1000 mean free paths for the slab for frequencies below 1 keV and 10 mean
free paths for the slab for frequencies above 1 keV. This corresponds, roughly,
to the precipitous drop in opacity as a function of frequency that can occur in
real materials. The portion of the emitted spectrum below 1 keV is strongly re-
absorbed, while the portion of the emitted spectrum above 1 keV encounters
a lower opacity and transports freely. This is a difficult non-linear problem
because, as the trapped radiation heats the material, the Planckian emission
spectrum moves towards higher frequencies where radiation flows freely.

In Figure 6 we show the material temperature for one instance of this problem
at t = 1sh a time where the thermal wave is still propagating through the
slab. As before, the standard formulation is the one exhibiting a high level of
statistical noise. Note, however, that this noise disappears in the “foot” of the
advancing thermal wave. This feature is produced by high-frequency photons
that encounter a lower material opacity.
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6 Summary and conclusions

The Symbolic Implicit Monte Carlo method (SIMC) [10] is an attractive frame-
work for the calculation of radiation transport in complex media and geome-
tries; it provides a basis for accurate and stable numerical schemes [11] [12].
In this paper we have demonstrated that the difference formulation [16] is
eminently suitable for numerical calculations of radiation transport in LTE,
employing the SIMC technique.

Our theoretical expectations were that the traditional formulation would be
better for thin media, while the difference formulation would be advantageous
in thick media. We have demonstrated that the difference formulation, when
employing the SIMC technique, offers significant noise reduction for thick sys-
tems, with its computational advantage scaling like the square of the opacity.
The expected cross-over wvis-a-vis the standard formulation occurs only for
very thin systems, thin enough that the difference formulation might become
a panacea for the Monte Carlo treatment of thermal radiation transport in
practical problems.

The character of the source terms is very different in the traditional and the
difference formulations: thermal emission in the former is replaced by deriva-
tive source terms in the latter. Therefore a key issue for the accuracy and
stability of the difference formulation is the successful treatment of the deriva-
tive source terms. We have developed efficient, accurate analytic techniques
for sampling the frequency spectrum of the source terms for the difference for-
mulation. Frequency sampling in the difference formulation depends only on
the space and time derivative of the material temperature, not on its optical
properties. This offers a significant advantage for problems with complicated
material optical properties. The value of this reduction in code complexity
became clear when we implemented the test problem with the step in opacity.
Although the test problems we presented were simple in order to clearly iden-
tify the advantages of the difference formulation, extensions to more complex
situations do not present conceptual difficulties.

The computational gain for the difference formulation demonstrated in this
paper is for the Monte Carlo portion of the problem. In order to obtain implicit
treatment of the source terms, the SIMC technique requires the solution of a
non-linear system of equations in order to perform the temperature update
at the end of the time step. The cost of this can become significant when
the number of zones in the problem is large. We used band-limited Gaussian
elimination in our numerical work on problems with as many as 1000 zones.
The bandwidth was limited both by the time step size and by the death
of Monte Carlo particles when they became too small, relative to their birth
weight. Multi-dimensional problems with significantly larger numbers of zones
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will pose a challenge, requiring the use of suitable iterative solution techniques.
Nonetheless, we believe that the demonstrated noise reduction in thick systems
will be worth the effort involved.

In our numerical evaluation of the difference formulation, we have employed a
piecewise constant discretization for the material temperature. Due to telepor-
tation effects, this discretization does not provide the correct diffusion limit
for zone sizes that are large compared to the mean free path of a photon. A
piecewise linear treatment of the material temperature is required to remove
this defect [19]. In order to obtain a more accurate solution, both the time
discretization and the treatment of the frequency spectrum of the emitted
photons will have to be improved. These issues will be addressed in future
work.

Our test problems have been relative simple, suitable as the first numerical
tests for the difference formulation for thermal radiation transport. In our
presented results it is clear that the importance sampling requirements for the
difference formulation are quite different than those for the standard one. It is
also the case that improvements such as weight vectors in frequency space and
deterministic handling of the spectral output from the interface adjoining free
space have a significant impact on noise when spectral information associated
with the photon field is desired. The details of these enhancements, along with
their relative value, are dependent upon the exact nature of the problems being
run and the computational results that are desired. They are beyond the scope
of this paper.

Finally, we note that our work may open the door to significant improvements
in the numerical treatment of more general transport problems and methods.
We can envisage application to scattering atmospheres, Comptonization, [2]
etc. Although this paper provides no obvious lessons for deterministic meth-
ods, these might also benefit from the smallness of the source terms appearing
in the difference formulation, for thick systems.

7 Appendix: sampling the frequency probability density function

The frequency probability density function (p.d.f.) was given previously in Eq.
(17) as a function of frequency v and two temperatures, 77 and T:
b (V, Tl) T14 —-b (V, TQ) T24

(T = T3)

f [Vv T17 TZ] = (23>

Sampling a frequency from this distribution function is not straightforward
because there are two limiting cases to deal with. The first occurs when one
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of the temperatures is zero (or is a vacuum interface). In this event, the p.d.f.
turns into a Planckian as normally sampled in IMC and SIMC [20]. The other
limiting situation is when the temperatures are very close together. There, the
limit of the p.d.f. as T, approaches 77 must be used, which returns us to the
original derivative:

’ b(v, )T} —b(v,T5) Ty 47 0B (v,T)
im — 7\
T1—T» (T14 — T24> ca oT*

(24)

This may be sampled by expanding B and defining x = hv/kT to get a unit-
less cumulative density function (c.d.f.) for x:

v 15 ehl///k;Th5 V/4

- 44 (ehv'/KT — 1)2 L5575 v
0

/

B F 15 ge
— - —
J 47t (1 — e

sda’ (25)

Multiplying and dividing the integrand by (1 + e™%/x?) gives a probability
distribution function (p.d.f.) of the form

pd.f.(z) = [mfi(x) + mfe (@)]h(z); =20 (26)

where m; + 1 = 1 and [;° f; (z)dx = 1. It can be verified that m; = 96/97,
o =1/97, fi = (1/24)z%e™™, fo = 42%e™>*, and
h = [145522] /[167% (1 — e *)* (22 + e %)].

This may be sampled by using the rejection technique with the comparison
function being this function with A (x) = hpax. Then f; is sampled with a
probability of ;1 and f, is sampled otherwise. The sample is kept if a random
number is less than h (x;) /hmax-

Finally, in the most general case we investigated two options, the first of
which is to develop a table lookup method. The reduced Planckian, b (z),
is numerically integrated and fitted with a spline. Then a Newton-Raphson
method is used to find the frequency for this c.d.f.
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The second method employs a rejection technique by expanding b and defining
C' = Tin/Tmax and © = hv/kT .y to get a c.d.f.:

/1—04< s 1 ew/01—1>dm (27)

There is a comparison function that can be used for rejection which is defined
as

f(z) =221 + 2% O = Thin/Tmax; @ =1 —0.1C (28)

The frequency may be then be sampled with the following simple algorithm
where r’s represent random numbers from 0 to 1:

(1) Ifry < 1/ [1—(3-1.5%) /a'] then goto (2) else goto (3)

(2) Sample 2715, x = In (r3ryrs) /1.5. Goto (4).

(3) Sample z3e™*. z = In (r37475) /a. »

(4) If f(x)-rg > a? [(ex —1)' = (ea’/c — 1) } / (1 — C*) then goto (1).
(5)

5) Sampled frequency is T pax.

Speed and accuracy were investigated on four different machines for a variety
of C values (ratio of low to high temperature). The accuracy of the Planckian,
table lookup and general rejection method appeared to be about the same for
C < 0.01. Similarly, the accuracy of dB/9T* limit, table lookup and general
rejection method were about the same for C' > 0.99.

Timing depended upon the computer employed, but there were general trends.
Each method was sampled 100 million times on each machine for different
values of C. For C below 0.1, the fastest method was the Planckian. The
general rejection method was 15% slower and the table lookup was about
twice as slow. For C' above 0.9, the fastest method was the 9B/0T* limit. The
general rejection method using Eq. (27) was about the same speed while the
table lookup was about four times slower.

In summary, we use the Planckian method for C' < 0.01, 9B/0T* limit method
for C' > 0.99 and the general rejection method using Eq. (27) otherwise.
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Fig. 1. Temperature distribution in a slab in steady state. The slab is heated from
the left by a 1 keV black body, and it radiates freely on the right. The total optical
depth (OD) of the slab is 1 in (a), 10 in (b), 100 in (c) and 1000 in (d). The
standard deviation of the standard formulation is denoted by diamonds and that of
the difference formulation by triangles. Note the change in their relative scale with
optical depth. The noise in the standard SIMC Monte Carlo increases dramatically
with optical depth, while in the difference formulation it does not.
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Fig. 2. The relative advantage of the difference formulation compared to standard
SIMC, plotted as a function of position for various optical depths of the slab. The
performance advantage increases almost quadratically with total optical depth. In
the 1 OD case, each zone is only 1/20 OD thick, nevertheless, the difference formu-
lation is almost as good as the standard one. There is a sharp decrease in advantage
where the temperature gradient is large. This could easily have been remedied by
importance sampling.
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Fig. 3. Thermal wave (Marshak wave) penetrating a uniform, gray slab of 1000 OD
at an early time, 40 sh. The standard formulation gives a noisy temperature profile
whereas that of the difference formulation is many orders of magnitude smoother.
As seen in Fig. 1, both calculations converge to the same temperature distribution in
steady state. The slight difference in the position of the leading edge is a statistical
fluctuation for the standard formulation.
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Fig. 4. Temperature distribution in the Su & Olson problem [21] at a late time
7 = 10. There is excellent agreement of the calculations with analytic results.
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Fig. 5. Temperature distribution in the Su & Olson problem [21] at an early time
7 = 0.01. The transport solution is limited by the speed of light, that is 1 in those

units. Note that there is no significant spreading of the radiation front at the leading
edge of the thermal wave.
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Fig. 6. Thermal wave penetrating a uniform slab with a non-trivial opacity. A 1 keV
black-body source is turned on at t = 0, the temperature profile is shown at ¢ = 1 sh.
The opacity is constant (high) for frequencies below 1 keV and again constant (but
low) for frequencies above 1 keV. At 1 keV the opacity of the material drops by a
factor of 100. The long “foot” of the temperature stems from high frequency photons
that penetrate deeply.
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