
LLNL’s Deterministic Transport Access Routines and Data∗

—————————

Documentation for the Nuclear Data Files

(ndf) and the libndf.a access routines

Bret R. Beck
Lawrence Livermore National Laboratory

UCRL-MA-147647

December 3, 2002

∗This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under contract #W-7405-ENG-48.

1

2 LIST OF TABLES

Contents

1 Introduction 3

2 A bit of history 3

3 Accessing the library and data at Livermore Computing 5

4 Energy grouping and data collapsing 6
4.1 Grouping and collapsing data only dependent on incident energy 6
4.2 Grouping and collapsing data dependent on incident and outgoing energies 8

5 Types of data in an ndfyi file 9
5.1 Global data . 9
5.2 Target specific data . 10

6 Routine description format and Data format 16

7 ndf access routines 16
7.1 Example of FORTRAN usage . 17
7.2 Example of C usage . 18
7.3 Summary of FORTRAN routines . 19
7.4 FORTRAN routines . 21
7.5 Summary of C routines . 43
7.6 C wrappers for the FORTRAN routines . 44
7.7 Files and their routines. 57

List of Tables

1 Transportable particles and their corresponding yi and file name. 3
2 Example of reaction data for 238U in a ndf1 file. 4
3 List of the four transport correcting algorithm options available through the ndf access

routines. TMl is the lth Legendre order interaction transfer matrix (see item Transfer
matrices), fl(E) is the lth Legendre order flux and N3 is the lesser of i + 3 and ng.
lMaxtc is the highest Legendre order available for the specified algorithm. 11

4 Example of the list of reactions for 9Be in a ndf1 file. The ↪→ indicates lines that are
a duplicate of the line above them except that the product particle substituted by the
processing code is listed instead the actual product particle. 12

5 Actual reaction data for the reactions in Table 4 as stored in a ndf1 file. 12
6 Example of the list of reaction for 10B in a ndf1 file. 12
7 Actual reaction data for the reactions in Table 6 as stored in a ndf1 file. 13

3

yi File name Transportable particle name
1 ndf1 Neutron (n)
2 ndf2 proton (p)
3 ndf3 Deuteron (d)
4 ndf4 Triton (t)
5 ndf5 Helium 3 (3He)
6 ndf6 Helium (4He) also called alpha (α)
7 ndf7 gamma (γ)

Table 1: Transportable particles and their corresponding yi and file name.

1 Introduction

This document describes the routines, provided by the LLNL Computational Nuclear Physics Group,
that access the data stored in the ndfyi files where yi is a token to be replaced by a 1, 2, 3, 4, 5,
6 or 7 (e.g., ndf1). These files contain nuclear (yi = 1 to 6) and atomic gamma-ray (yi = 7) data
required by deterministic transport codes. Such codes transport particles through a composite material
as particles are destroyed and created through interactions with the composite material. The various
ndfyi files contain data so that the particles listed in Table 1, called transportable particles, can be
transported through various composite materials. Within a ndfyi file is a list of targets (also called
isotopes) for which there are data for reactions induced by its transportable particle. A composite
material is a combination of one or more of these targets. For each target there is a list of nuclear
reactions (or atomic gamma-ray reactions for the ndf7 file) for which there are data for that target.
Section 5 describes the type of data stored in a ndfyi file for each target.

For example, consider a material composed of only Uranium 238, 238U, for which one would like to
transport neutrons. Since only neutrons are being transported, only the ndf1 file needs to be accessed.
The ndf1 file may contain 238U with data for the nuclear reactions listed in Table 2. Various data,
like total cross-section, fission spectrum, etc., are stored for the 238U target. The last reaction listed
in the Table 2, capture, creates a γ particle. The energy and angular distribution information about
the created γs are available in the ndf1 file (i.e., transport matrix and deposited energy). In order to
transport γs the ndf7 file would need to be access.

In this document, an incident transportable particle is labeled yi and an outgoing (appearing on
the right-hand-side of the reaction equation) transportable particle is labeled yo. Some reactions may
have more than one type of outgoing transportable particle (e.g., (n, p α) has a proton and an alpha as
outgoing particles).

2 A bit of history

Originally, the access routines, called ndf access routines, were a set of LLLTRAN routines, it is
claimed, built into a library named libndf.a. LLLTRAN was a version of FORTRAN, with extensions,
developed at Lawrence Livermore National Laboratory and dates back to at least the 1970s. The ndf
routines were incomplete in that some essential knowledge of the data could not be obtained through
the access routines; it had to be known or guessed by the code developer. For example, the routine
ndfistab returns a list of all targets and the number of targets. Memory for the target list is allocated

4 2 A BIT OF HISTORY

n + 238U → n + 238U ! Elastic scattering
n + 238U → n′ + 238U ! Inelastic scattering
n + 238U → n + n + 237U ! (n,2n)
n + 238U → n + n + n + 236U ! (n,3n)
n + 238U → n + n + n + n + 235U ! (n,4n)
n + 238U → various neutrons + fission fragments ! Fission
n + 238U → γ + 239U ! Capture

Table 2: Example of reaction data for 238U in a ndf1 file.

by the calling routine. If memory for the target list is insufficient a memory overwrite will occur. In
the old routines there was no way to determine the number of targets prior to calling ndfistab so
that appropriate memory could be allocated. Starting sometime in the late 1990’s, routines have been
added to overcome any deficiencies. For example, a routine ndfnistab as been added which returns the
number of targets in the opened ndfyi file. C-wrapper routines have also been added and a C-header
file ndf.h exist for C programming. The FORTRAN routines have the prefix ndf and the C-wrapper
routines have the prefix ndfc.

Some of the concepts and equations used to calculate the data can also be found in reference [1],
in particular chapters VI and VII, and in reference [2].

The data in the ndfyi files is a ”processed” form of the data from three nuclear databases devel-
oped at LLNL. One database contains information about neutron incident on various targets and is
called ENDL (Evaluated Neutron Data Library). Another database contains information about the
5 supported transportable charged particles (p, d, t, 3He, and α) incident on various targets and is
called ECPL (Evaluated Charged Particle Library). The last database contains information about
gammas (γs) incident on various targets and is called EGDL (Evaluated Gamma Data Library). These
databases represent the data in point-wise form. For example, cross-section data is given as 2-column
data where the first column is the incident energy in MeV and the second column is the cross-section
in barns; as the following lines demonstrate,

1.2510000E+01 0.00000E+00
1.4000000E+01 2.00000E-02
2.0000000E+01 2.00000E-02

This data is converted from point-wise data into grouped data (see Section 4) to form the ndfyi

files and is then called processed data. In the future, the LLNL Nuclear Computations Group may
make evaluated data from other databases (e.g., the ENDFB5 database from Brookhaven National
Laboratory) available as ndfyi files.

The acronym ENDL as two derivations. At times it will derive from Evaluated Neutron Data
Library. At other times it will derive from Evaluated Nuclear Data Libraries. In this latter version,
nuclear implies all three databases (ENDL, ECPL and EGDL). Hopefully, the appropriate meaning for
this acronym will be clear when it is used at various places in this document.

5

3 Accessing the library and data at Livermore Computing

The Nuclear Computations Group supports the ndf accessing routines and required nuclear data on
LLNL’s Livermore Computing Facilities (e.g., GPS and Forest Clusters). When possible the OCF and
the SCF ndf libraries and data are identical. Since the data is either in ASCII or a binary independent
format it resides in the global directory /usr/gapps/nuclear/data, allowing all LC platforms on OCF
or SCF to access the identical data. The directory /usr/gapps/nuclear/data has the following file and
sub-directories relevant for using the libndf.a routines:

bdfls) An ASCII file containing the following: (1) lists of group boundaries that can be accessed
using ndfidog, (2) lists of fluxes used by ndfgroup, (3) a list of target masses, (4) a list of
target half-lives, (5) some constants and other data of little concern to a user of the ndf accessing
routines. See the routines ndfidog, ndfcidog, ndfgroup and ndfcgroup.

alpha) A sub-directory containing various processed Evaluated Nuclear Data Library (ENDL) data
in the alpha testing stage.

betas) A sub-directory containing various processed ENDL data in the beta testing stage.

current) A sub-directory containing default data accessed by the ndf accessing routines unless a user
specifies otherwise (see ndfaccess and ndfinit).

endl) A sub-directory containing various LLNL ENDL, ECPL and EGDL processed data.

The ndf data in the alpha, betas and endl sub-directories typically resides several sub-directories
below these directories. For example, a version of ENDL (Evaluated Neutron Data Library) was
released in 1999 and labeled endl99. This data resides inside the endl99/ndf sub-directory of the
endl sub-directory (i.e., in the directory /usr/gapps/data/nuclear/endl/endl99/ndf.

The libndf.a and ndf.h files reside in sub-directories of the /usr/apps/ndf directory. The
/usr/apps/ndf directory has the following sub-directories:

betas) This sub-directory contains various libndf.a and ndf.h files in the beta testing stage. Different
releases of libndf.a and ndf.h are signified by a date of the form YYMMDD and reside in a sub-
directory named YYMMDD. For example, a version of libndf.a and ndf.h releases on 9-Jan-2002
resides in the sub-directory 020109.

current) A sub-directory containing the version of libndf.a and ndf.h most users should use.

old) A sub-directory containing the previous contents of the current sub-directory.

new) A beta version that will likely become the current version.

versions) A sub-directory containing all versions of libndf.a and ndf.h that once resided in the
current sub-directory. Versions of libndf.a and ndf.h residing in betas may be removed at
anytime. However, those residing in the versions sub-directory will not be removed, so that a
users can, if they wish, always insure that they are getting the same libndf.a version by loading
against a libndf.a in a sub-directory in the versions sub-directory instead of the current sub-
directory.

6 4 ENERGY GROUPING AND DATA COLLAPSING

Some releases of libndf.a and ndf.h have a sub-directory named debug. This sub-directory contains a
libndf.a file compile with the debugging option ”-g” and it also contains the source files. For example,
the directory /usr/apps/ndf/versions/020109 contains the sub-directory debug.

4 Energy grouping and data collapsing

Much of the data stored in a ndfyi file is a function of the incident particle’s energy (e.g., total
cross-section σ(E)) (and possibly outgoing transportable particle energy (e.g., transfer matrix)). As is
common in deterministic computation, the energies in the ndfyi files have been discretized: the multi-
energy-group approximation (see [3] page 61) which is called grouping in this document. In grouping,
the incident energy range is divided up into ng regions by defining ng + 1 energy boundaries. In a
ndfyi file the boundaries are stored from highest to lowest energy; the data is also stored and retrieved
in that order. The incident energy groups are labeled g for 1 ≤ g ≤ ng. The outgoing energy groups
are label h for 1 ≤ h ≤ nh. Only the transfer and fission matrix data are stored as a function of both
incident and outgoing energies; their grouping and collapsing are discussed in Section 4.2. All other
data is stored as a function of incident energy; their grouping and collapsing are discussed in the next
section.

4.1 Grouping and collapsing data only dependent on incident energy

Data that is only a function of incident particle energy is grouped by performing a Legendre-order-flux
weighted averaging of the data between group boundaries. That is, for the lth Legendre order Ql of a
quantity Q(E) and the lth Legendre order flux f l(E), the value of Ql for group g, Ql

g, is calculated as,

Ql
g =

∫ Eg

Eg+1

f l(E) Ql(E) dE∫ Eg

Eg+1

f l(E) dE

. (1)

Only the transport correcting cross-sections and the interaction transfer matrix have l > 0 Legendre
orders. All other quantities have only the isotropic l = 0 Legendre order; in which case the l-order label
is dropped (e.g., σ0 is written as σ). For example, consider a cross-section σ(E) grouped using the 3
groups given by the energy boundaries (20.0, 15.0, 12.3, 0.1 MeV); then the grouped cross-sections are,

σ1 =

∫ 20.0

15.0
f0(E) σ(E) dE∫ 20.0

15.0
f0(E) dE

(2)

σ2 =

∫ 15.0

12.3
f0(E) σ(E) dE∫ 15.0

12.3
f0(E) dE

(3)

4.1 Grouping and collapsing data only dependent on incident energy 7

σ3 =

∫ 12.3

0.1
f0(E) σ(E) dE∫ 12.3

0.1
f0(E) dE

. (4)

Four quantities are not grouped as given by Eq. 1. One is the group speed vg which is calculated as,

1
vg

=

∫ Eg

Eg+1

f0(E)
v(E)

dE∫ Eg

Eg+1

f0(E) dE

(5)

since it is 1/vg that appears in transport equations. However, it is vg which is returned by the access
routines. Another quantity not grouped as per Eq. 1 is the group flux f l

g, which is not weighted,

f l
g =

∫ Eg

Eg+1

f l(E) dE . (6)

The last two quantities not grouped as per Eq. 1 are the transfer and fission matrices. These quantities
also depend on outgoing particle energy and are discussed in Section 4.2.

Often the data in a ndfyi file are stored with more energy resolution than a problem requires.
In this case, the user can request, by calling ndfgroup, that the ndf access routines return the data
grouped to a smaller energy group. This smaller energy group must be a subset of the energy group
used to generate the data in the ndfyi file. (A subset energy group contains only boundaries of the
superset group). The example above has six 1-group subsets (20.0, 15.0), (20.0, 12.3), (20.0, 0.1), (15.0,
12.3), (15.0, 0.1), and (12.3, 0.1), four 2-group subsets (20.0, 15.0, 12.3), (20.0, 15.0, 0.1), (20.0, 12.3,
0.1) and (15.0, 12.3 0.1) and itself as a 3-group subset.

Data mapped to a subset group is referred to as collapsed data in this document and the act of
mapping the data is called collapsing. To receive collapsed data one must first call the ndf routine
ndfgroup (or ndfcgroup). The first two arguments of ndfgroup are the new group boundaries and
the number of new groups (labeled ncg is this document). The third argument of this routine is a flux
id. The bdfls file is scanned for the requested flux. This flux ϕ is then grouped onto the old groups
and the data is collapsed using this flux as a weight for the old group data. The flux is calculated as,

ϕl
g′ =

∑
g∈g′

ϕl
g =

∫ Eg′

Eg′+1

ϕl(E) dE . (7)

where

ϕl
g =

∫ Eg

Eg+1

ϕl(E) dE . (8)

Here, g′ is a label for the new groups, ϕl
g is the requested flux grouped (see Eq. 8) and g ∈ g′ means to

sum over all g for which the boundaries of g fall inclusively between the boundaries of g′.
Collapsing a quantity Ql

g is calculated as,

Ql
g′ =

∑
g∈g′

ϕl
g Qg∑

g∈g′

ϕl
g

. (9)

8 4 ENERGY GROUPING AND DATA COLLAPSING

In the above example, collapsing the cross-section to the 2-group (20.0, 15.0, 0.1) yields,

σ′1 =
σ1ϕ

0
1

ϕ0
1

= σ1 (10)

σ′2 =
σ2 ϕ0

2 + σ3 ϕ0
3

ϕ0
2 + ϕ0

3

. (11)

While collapsing to the 1-group (20.0, 12.3) yields,

σ′1 =
σ1 ϕ0

1 + σ2 ϕ0
2

ϕ0
1 + ϕ0

2

. (12)

The speed (and flux as given in Eq. 7) is collapsed differently, so as to be consistent with its previous
groupings. Speed is collapsed as,

1
vg′

=

∑
g∈g′

ϕ0
g

vg∑
g∈g′

ϕ0
g

. (13)

4.2 Grouping and collapsing data dependent on incident and outgoing energies

This section discusses grouping and collapsing of transfer and fission matrix data. These data are
dependent on both incident and outgoing particles’ energies. Grouping and collapsing of transfer
matrix data are more complicated than is presented here, since either particle number, energy, or
number-and-energy of the outgoing particles is conserved during the grouping and collapsing. In this
section only particle conserving grouping and collapsing will be discussed. A full discussion of grouping
and collapsing of the transfer matrix data can be found in Chapter VI and pages VII-19 to VII-23 of
reference [1] and in reference [2].

If M(E,E′) is a quantity that is dependent on incident E and outgoing E′ energies and f l(E) is the
l-order Legendre flux then the l-order Legendre particle-conserving grouped matrix M l

g,h is calculated
as,

M l
g,h =

∫ Eg

Eg+1

∫ E′
h

E′
h+1

f l(E) M l(E,E′) dE dE′

∫ Eg

Eg+1

f l(E) dE

. (14)

Collapsing this data to new incident and outgoing particle groups, label as g′ and h′, is calculated
as,

M l
g′,h′ =

∑
g∈g′

∑
h∈h′

ϕl
g M l

g,h∑
g∈g′

ϕl
g

. (15)

Here g ∈ g′ means to sum over all g for which the boundaries of g fall inclusively between the boundaries
of g′ and h ∈ h′ means to sum over all h for which the boundaries of h fall inclusively between the
boundaries of h′ except that the end points of h′ are extended to include the end points of h so as
to conserve outgoing particle number. For example, collapsing the outgoing particle’s group from

9

(20.0, 15.0, 12.3, 0.1) to (20.0, 15.0, 12.3) will result in the outgoing particle’s collapse group being
(20.0, 15.0, 0.1) when collapsing. The incident particle’s collapse group is set by calling ndfgroup or
ndfcgroup. For the interaction transfer matrix data and the fission transfer matrix data the outgoing
particle’s collapse group is also that set by calling ndfgroup or ndfcgroup. For transfer matrix data
for yi 6=yo the outgoing particle’s collapse group is specified through arguments to the routines dfpmat
and ndfcpmat.

5 Types of data in an ndfyi file

Each ndfyi file contains a global data section, and a target specific data section for each target. The
global data section contains target independent data and brief information about each target in the
file.

5.1 Global data

This section describes the data in the global data section and the ndf access routines used to retrieve
this data.

Date: Date is an integer date in the form YYMMDD (e.g., 991031 for 31-Oct-1999). Originally
this date was the day on which the file was processed. Currently, as of about 1-Oct-2000, the
date is used to uniquely identify a file. Dates in files generated before about 1-Oct-2000 are not
guaranteed to be unique. See routines ndfinit, ndfcinit and ndfcopen.

Group id: The incident particle’s group id from the bdfls file used to generate the ndfyi file. See
routines ndfgid and ndfcgid.

Number of groups: The number of incident particle groups used to generate the ndfyi file. This is
designated as ng in this document. See routines ndfngroups, ndfcngroups, ndfngroup and
ndfcngroup.

Group boundaries: The incident particle’s group boundaries used to generate the ndfyi file. See
routines ndfgp and ndfgid. This data has units of MeV.

Group speeds: The incident particle’s group averaged speeds (see Eqs. 5 and 13). See routines
ndfsp and ndfcsp. This data has units of cm/sh where sh = 10−8 second.

Group flux: The grouped flux used to generate the ndfyi file (see Eqs. 6, 7 and 8). Typically, the
ndfyi file is generated with a flat flux with only the l = 0 Legendre order specified. There is no
routine which returns the flux used to generate the ndfyi file. If ndfgroup has been called then
ndfflxw, ndfflxw l, ndfwsp, ndfcflxw, ndfcflxw l or ndfcwsp can be called to obtained the
grouped flux for the flux specified with the flux id argument of ndfgroup.

yo descriptor: The list of transportable outgoing particles and relevant information. The number of
transportable outgoing particles is obtained from ndfnyos or ndfcnyos and the list is obtained
from ndfyos or ndfcyos (also see ndfyo or ndfcyo). When a ndfyi file is generated the transfer
matrix for transportable incident particle going to a transportable outgoing particle is calculated.
During this calculation the processing code is instructed, through a flag labeled iecflg, to conserve

10 5 TYPES OF DATA IN AN NDFYI FILE

either transportable outgoing particle number, energy, or number-and-energy. (Traditionally,
conservation of number (iecflg = 0) is used for neutrons, conservation of number-and-energy (iecflg
= 3) is used for charge particles and conservation of energy (iecflg = 1) is used for gammas.)
This flag is stored in the file and used when collapsing. It can be accessed using the routine
ndfyo info or ndfcyo iecflg. When the transportable outgoing particle is the same as the
transportable incident particle (i.e., yi = yo) then the matrix generated has dimension ng × ng.
When the transportable outgoing particle is different than the transportable incident particle
(i.e., yi 6= yo) then the matrix generated has dimension nh×ng. The value of nh can be accessed
using ndfyo info or ndfcyo nego. There exist an iecflg and nh for each transportable outgoing
particle type.

Target list: The integer list of targets in the ndfyi file. The targets are listed in terms of their ZA
= 1000 × Z + A (e.g., 238U as ZA = 92238). See routines ndfnistab, ndfistab, ndfcnistab
and ndfcistab.

5.2 Target specific data

This section describes the data in the target specific data section and the ndf access routines used to
retrieve this data. To access this data for a specific target one must first call ndfiso to select the target.

Atomic mass: The mass of the target in atomic mass units (AMU). Historically, this was called
weight, hence the accessing routines are call ndfatw and ndfcatw for ATomic Weight (atw).

lMax: The maximum Legendre order that data is calculated to and stored in the ndfyi file. This
is only relevant for the transfer matrix when the incident particle and outgoing particle are the
same (i.e., yi = yo) and for the transport correcting cross-sections. (When yi 6= yo the outgoing
particle distribution is assumed to be isotropic; hence, only the l = 0 transfer matrix is stored).
See routines ndfmxorder, ndfcmxorder, ndfmxorder tc and ndfcmxorder tc.

Total cross-section: The total cross-section is the sum of all the reaction cross-sections described
in item Reaction specific information below and has units of barn. The access routines for
this data are ndftotal, ndfsig, ndfctotal and ndfcsig.

Transport correcting cross-section: Deterministic transport codes that use a Legendre expansion
truncate the expansion due to resource limitations. A truncation at order lT requires a correction
from the next order lT + 1. This correction is called the transport correcting cross-section in
this document and is label tcl in Table 3 with l = lT + 1. Four transport correcting cross-
section methods are supported by the ndf accessing routines. Table 3 describes the four methods.
The default method is Pendlebury/Underhill. Each transport correcting cross-section can be
calculated for Legendre order 1 to lMaxtc where lMaxtc is given in column 3 of Table 3. The
LLNL exact method has two caveats; (1) the lMax + 1 exact correction is really the LLNL
approximate method, (2) if the ith group total cross-section is less than the exact tcl(i) then the
exact tcl(i) is replaced by the approximate tcl(i). See routines ndfsig, ndftrcorr, ndfcorrec,
ndfncorrec, ndfcsig, ndfctrcorr, ndfccorrec and ndfcncorrec. This data has units of barn.

Reaction specific information: Each target contains a list of all reactions included in its processing
as well as cross-section and particles produced (including non-transportable particles) for each

5.2 Target specific data 11

Code Name lMaxtc tcl(i) (for i = 1 to ng)
0 None lMax + 1 0
1 Pendlebury/Underhill lMax TMl(i, i)
2 LLNL (exact) lMax

∑ng
j=1 fl(j) TMl(i, j)/fl(i)

LLNL (approximate) lMax + 1
∑ng

j=1 TMl(j, i)
3 Ferguson lMax

∑N3
j=i TMl(j, i)

Table 3: List of the four transport correcting algorithm options available through the ndf access
routines. TMl is the lth Legendre order interaction transfer matrix (see item Transfer matrices),
fl(E) is the lth Legendre order flux and N3 is the lesser of i + 3 and ng. lMaxtc is the highest Legendre
order available for the specified algorithm.

reaction. A reaction is identified by a unique combination of C, S, Q, X1, X2, X3, and Qeff -
values. The C-value identifies the type of reaction (e.g., C = 10 identifies the reaction as elastic
scattering, C = 11 identifies the reaction as inelastic scattering and C = 15 identifies the reaction
as fission). Some reaction types are sub-divided as given by the S-, X1-, X2-, and X3-values. As
example, for many targets the C = 11, inelastic scattering, reaction is sub-divided into several
level excitations (S = 1, X1 = level excitation MeV) and the rest (S = 0). The Q-value is the
mass difference of the reaction. Qeff is the threshold-energy for the reaction, and is typically, but
not always, Qcalculated - X1. Qcalculated is calculated during the processing stage from a table of
masses, while Q is taken from input data files that may contain slightly different masses; whence
Qeff is close but not always equal to Q - X1. All energy values have units of MeV.

The following two examples illustrate the type of reactions found in a ndfyi file. (Note, sometimes
there is a difference between the actual particles produced and those found in a ndfyi file. During
the processing of a ndfyi file, the particles produced (i.e., particles occurring on the right hand
side of the → in Tables 4 and 6) are determined. If a product particle is not in the list of
targets in the ndfyi file then the processing code substitutes for it a nearby target that is in the
ndfyi file.) Tables 4 and 5 are an example of a neutron incident on a 9Be target. This ndf1
file does not contain the targets 9Li, 8Li and 6He, so they were replaced by the targets 7Li, 7Li
and α respectively. The Q-values are calculated with the actual product particles and not the
substituted ones.

Tables 6 and 7 are an example of a neutron incident on a 10B target. Multiple C = 11 entries are
present; four with S = 1 for the excitation levels 0.717, 1.74, 2.154 and 3.59 MeV and one with
S = 0 for the rest of the inelastic reaction cross-section data.

The access routines allow one to obtain information about the number of reactions, the list of
C-values, the summed cross-section and Q-value for a reaction type, and the particles produced
for a specific reaction as described below.

Number of reactions: The number of reactions for a specific target is obtained by calling
ndfnreact or ndfcnreact. For Tables 5 and 7 the number of reactions are 8 and 11 respec-
tively. Also see routines ndfreact, ndfnrxs, ndfrxs, ndfrxslist, ndfrxslevel, ndfcreact,
ndfcnrxs, ndfcrxs, ndfcrxslist and ndfcrxslevel.

12 5 TYPES OF DATA IN AN NDFYI FILE

n + 9Be → n + 9Be ! C = 10, Elastic scattering
n + 9Be → n + n + α + α ! C = 12, (n,2n)
n + 9Be → p + 9Li ! C = 40, (n,p)
↪→ n + 9Be → p + 7Li ! 9Li replaced with 7Li
n + 9Be → d + 8Li ! C = 41, (n,d)
↪→ n + 9Be → d + 7Li ! 8Li replaced with 7Li
n + 9Be → t + 7Li ! C = 42, (n,t)
n + 9Be → α + 6He ! C = 45, (n,α)
↪→ n + 9Be → α + α ! 6He replaced with α
n + 9Be → γ + 10Be ! C = 46, Capture

Table 4: Example of the list of reactions for 9Be in a ndf1 file. The ↪→ indicates lines that are a
duplicate of the line above them except that the product particle substituted by the processing code
is listed instead the actual product particle.

C S Q X1 X2 X3 Qeff

10 0 0. 0. 0. 0. 0.
12 0 -1.5728 0. 0. 0. -1.5728
40 1 -12.83 0. 0. 0. -12.824
41 1 -14.66 0. 0. 0. -14.664
42 1 -10.44 0. 0. 0. -10.439
42 1 -10.44 0.478 0. 0. -10.917
45 1 -0.6 0. 0. 0. -0.60175
46 0 6.82 0. 0. 0. 6.82

Table 5: Actual reaction data for the reactions in Table 4 as stored in a ndf1 file.

n + 10B → n + 10B ! C = 10, Elastic scattering
n + 10B → n’ + 10B ! C = 11, Inelastic scattering
n + 10B → n + d + α + α ! C = 23, (n,n d α)
n + 10B → n + n + p + α + α ! C = 31, (n,2n p α)
n + 10B → t + α + α ! C = 43, (n,t α)
n + 10B → α + 7Li ! C = 45, (n,α)
n + 10B → γ + 11B ! C = 46, Capture

Table 6: Example of the list of reaction for 10B in a ndf1 file.

5.2 Target specific data 13

C S Q X1 X2 X3 Qeff

10 0 0. 0. 0. 0. 0.
11 0 0. 0. 0. 0. 0.
11 1 0. 0.717 0. 0. -0.717
11 1 0. 1.74 0. 0. -1.74
11 1 0. 2.154 0. 0. -2.154
11 1 0. 3.59 0. 0. -3.59
23 0 -6.02 0. 0. 0. -6.02
31 0 -8.158 0. 0. 0. -6.02
43 0 0.33 0. 0. 0. 0.33
45 0 2.8 0. 0. 0. 2.8
46 0 11.45 0. 0. 0. 11.45

Table 7: Actual reaction data for the reactions in Table 6 as stored in a ndf1 file.

Reaction cross-section: Reaction specific, for a specified C-value, cross-section data are ob-
tained by calling ndfrxs or ndfcrxs. Also see routines ndfnrxs, ndfrxslist, ndfrxslevel,
ndfcnrxs, ndfcrxslist and ndfcrxslevel. This data has units of barn.

Reaction particles produced: The particles produced for a specified Reaction, C-value, are
obtained by calling ndfprod or ndfcprod. As example, for the C = 40 reaction for the
data in Table 4, ndfnprod would return 2 and ndfprod would return the lists ZAList = {
2, 3007 } and MList = { 1, 1 } since two particles are produced (i.e., p and 7Li), each with
multiplicity 1. Also see routines ndfnprod, and ndfcnprod.

Transportable particles produced, (i.e., yos): Each target produces transportable parti-
cles. For example, the 9Be target of Table 4 and the 10B target of Table 6 each produce 6
transportable particles (n, p, d, t, α and γ). The number of difference transportable particle
types produced is obtained by calling ndfnyos or ndfcnyos. A list of transportable particle
types produced is obtained by calling ndfyos or ndfcyos. Also see routines ndfnppyos,
ndfppyos, ndfcnppyos, and ndfcppyos which are similar but do not include the incident
transportable particle in the number of particles produced or the list.

Transfer matrices: The formulas for the transfer matrices will not be presented here; instead, see
chapter VI of reference [1] and reference [2]. In summary, three methods can be used to calculate a
transfer matrix, depending on whether particle number, energy or number/energy of the outgoing
particles is to be conserved during the processing (see item yo descriptor in Section 5.1). Only
the particle number conserving transfer matrix is outlined here. The particle number conserving
transfer matrix for outgoing particle yo is defined as,

J l
yo,g→h =

∑
r,yo

∫ Eg

Eg+1

∫ E′
h

E′
h+1

f l(E) σr(E) Mr,yo(E) πl
r,g→h dE dE′

∫ Eg

Eg+1

f l(E) dE

 . (16)

Here, h is the outgoing particle’s group designation,
∑

r,yo
means to sum only reactions that

produce yo as an outgoing particle, σr(E) and Mr,yo(E) are the cross-section and multiplicity

14 5 TYPES OF DATA IN AN NDFYI FILE

respectively for the reaction (e.g., for the C = 13, (n,3n), reaction and yo = 1, M13,1(E) = 3)
and πl

r,g→h is the grouped, lth Legendre coefficient of the normalized probability of the incident
particle of energy E producing the required outgoing particle with energy E′ at angle θ.

The transfer matrices are divided into two types. The first type is called the interaction transfer
matrix and is the transfer matrix when the incident transportable particle type is the same as the
outgoing transportable particle type (i.e., yi → yo for yi = yo). The interaction transfer matrix
is calculated to Legendre order l = lMax + 1 during processing, so that the lMax + 1 LLNL
approximate transport correcting cross-sections can be calculated, but is only stored to order l =
lMax in the ndfyi file. These matrices are accessed with routines ndfsig, ndftransfer, ndfcsig
and ndfctransfer. The second type of transfer matrix is called the production transfer matrix.
This matrix is the transfer matrix when the incident transportable particle type is different
than the outgoing transportable particle type (i.e., yi → yo for yi 6= yo) and is only calculated
for Legendre order l = 0. These matrices are accessed with routines ndfnppyos, ndfppyos,
ndfpmat, ndfppmatrix, ndfcnppyos, ndfcppyos, ndfcpmat and ndfcppmatrix. This data
has units of barn.

The multiplicity factor in Eq. 16 often leads to confusion with users of the ndf access routines as
they assume that the total cross-section must be greater than or equal to the l = 0 interaction
transfer matrix integrated over outgoing particle energy; since the sum is only over reactions that
produce a specific outgoing particle. To understand the confusion, consider a simple problem
with a neutron incident on target X that only has the two reactions C = 10 (n,n) and C = 13
(n,3n). Let both reactions’ cross-sections be isotropic, independent of energy and 1 barn. Thus,
the l = 0 interaction transfer matrix integrated over outgoing particle energy is 4 barns (1 × 1.
barn + 3 × 1. barn) which is greater than the total cross-section of 2 barns.

Fission < νσf >g: For neutrons produced by fission, C = 15, the multiplicity is dependent on energy
and not an integer (since it is an average multiplicity over many possible fission channels). The
average number of neutrons produced by fission < νσf >g is stored for targets that fission and is
calculated as,

< νσf >g=

∫ Eg

Eg+1

ν̄(E) σf (E)f0(E) dE∫ Eg

Eg+1

f0(E) dE

(17)

where ν̄(E) is the number of neutrons produced by fission average over possible fission channels
and σf is the fission cross-section. This data only occurs for neutron as incident particle (yi = 1)
and when the neutron multiplicity returned by ndfprod or ndfcprod is 0. This data is accessed
with routines ndffisx and ndfcfisx, and has units of barn.

Fission neutron transfer matrix: For targets in a ndf1 file that have fission data the l = 0 fission
transfer matrix is calculated. It is calculated just like the l = 0 interaction transfer matrix except
only the fission reaction data is used. See routines ndffisx ndfifsp, ndffsp, ndfcfisx, ndfcifsp
and ndfcfsp. This data has units of barn.

Energy conservation and energy data: To conserve energy, particles that are not transported by
a code have to have their energy deposited locally. The amount of energy that must be deposited
locally and how to obtain it from a ndfyi file is outlined below.

5.2 Target specific data 15

During the processing of a ndfyi file, the average kinetic energy of an incident particle in group
g is calculated as,

< E σ >g=
∑
r

∫ Eg

Eg+1

E σr(E) f0(E) dE∫ Eg

Eg+1

f0(E) dE

 =

∫ Eg

Eg+1

E σ(E) f0(E) dE∫ Eg

Eg+1

f0(E) dE

. (18)

Here, σr(E) is the cross-section for a given reaction and σ(E) is the total cross-section.

The average energy due to the mass differences between the before and after reaction particles,
called the production energy (see item ep below), is calculated as,

< Qσ >g=
∑
r

Qr

∫ Eg

Eg+1

σr(E) f0(E) dE∫ Eg

Eg+1

f0(E) dE

 =
∑
r

Qr σr,g (19)

where Qr is the sum of the incident particle’s and target’s masses minus the sum of all outgoing
particles’ masses (this includes non-transportable particles). The sum of Eqs. 18 and 19 is the
total available energy (see item emax below),

< E σ >g,Available=< E σ >g + < Qσ >g . (20)

During the processing the average energy deposited to a transportable outgoing particles (see
item ed(yo) below) is calculated as,

< E′ σ >g,yo=
∑
r

∫ Eg

Eg+1

E′
r,yo

(E) σr(E) f0(E) dE∫ Eg

Eg+1

f0(E) dE

 =

∫ Eg

Eg+1

E′
r,yo

(E) σ(E) f0(E) dE∫ Eg

Eg+1

f0(E) dE

. (21)

Here E′
r,yo

is the average energy deposited to a transportable particle of type yo for reaction r.
The amount of energy to be locally deposited is calculated as the total available energy, Eq 20,
minus the energy deposited to all transportable outgoing particles that are being transported.

emax: This is the total available energy (Eq. 20) and has units of MeV-barn. This data is
accessed using ndfemax or ndfcemax.

ep: This is the production energy (Eq. 19) and has units of MeV-barn. This data is accessed
using ndfep or ndfcep.

ed(yo): This is the average energy deposited to transportable outgoing particle yo (Eq. 21) and
has units of MeV-barn. This data is accessed using ndfsig or ndfcsig when (yo = yi) and is
accessed using ndfpmat or ndfcpmat when (yo 6= yi). Also see routines ndfed, ndfnyos,
ndfyos, ndfced, ndfcnyos and ndfcyos.

16 7 NDF ACCESS ROUTINES

6 Routine description format and Data format

Section 7.4 is an alphabetical list of the FORTRAN ndf accessing routines and section 7.6 is an al-
phabetical list of its C-wrapper routines. The description of each FORTRAN routine contains four
parts. The first part labeled Purpose is a brief statement about the routine. The second part labeled
FORTRAN Calling presents the routine and its arguments, if any. If the routine has arguments
then a table containing the following information about each argument immediately follows;

Argument type Argument name Input/Output Unit Description.

Argument type is the FORTRAN declaration of the argument in the ndf routine, or function return
type if the routine is a FORTRAN function.

Argument name is its name and dimension, if any, as declared in the ndf routine. All multi-
dimensional data are stored as 1-dimensional data. An argument name defined as ’V(c × r)’ is a
serial representation of a 2-dimensional matrix named ’V’ and of size c × r. The fastest varying
dimension is c. For example, the production transfer matrices are a function of outgoing and
incident particles’ energies. With nch outgoing energy groups and ncg incident energy groups
the production transfer matrices are defined as J(nch× ncg). Accessing the ith outgoing energy
group and the jth incident energy group is done serially as J(nch ∗ j + i).

Input/Output is one of the following: (i) the argument is ”read from” in the ndf routine, (o) the
argument is ”written to” in the ndf routine, (f) the routine is a function which returns this
argument type or (u) the argument is maintained for historical reasons but is not used.

Unit is the unit for this argument (N/A is used for unit less arguments).

Description is a short summary of the type of data.

The third part is a description of the routine. The next part, if present, if Fatal Message and
describes reason why the routine will abort execute of the program. The final part list other routines
closely related to this routine and is labeled Related routines. The first routine listed is the routine
that must be called before the described routine is called. If this must routine is not called, then the
described routine will print a fatal message. If the first routine listed is ”None” then no other ndf
accessing routine must be called prior to calling the described routine. The must routine may require
another routine to be called before it is called. For example, the routine ndfatw requires the routine
ndfiso, the routine ndfiso requires the routine ndfbuff and the routine ndfbuff requires the routine
ndfinit.

7 ndf access routines

This section describes the FORTRAN ndf access routines and their C-wrapper routines. The description
of ndfaccess outlines the search path used by ndfinit (ndfcinit) to file the requested ndfyi file. In
general, ndfaccess (ndfcaccess) must be called before ndfinit (ndfcinit). If the transport correction
type is to be set, then ndftrcorr (ndfctrcorr) must be call after each call to ndfinit (ndfcinit)
as ndfinit (ndfcinit) resets the transport correction type to the default. After ndfinit (ndfcinit)
one must call ndfbuff) (ndfcbuff). (If ndfcopen is used instead of ndfcinit then one must not call

7.1 Example of FORTRAN usage 17

ndfcbuff.) Before any target specific information can be obtained, ndfiso (ndfciso) must be called
to select the desired target. To open another file ndfclose (ndfcclose) must first be called to close
the current file.

7.1 Example of FORTRAN usage

The following FORTRAN example demonstrates how to open a file and loop through all the targets
to print out their ZA, mass and the total cross-section for each reaction type.

Program ZA

Integer i, yi, iZA, nZAs, Date, ReqdMem, ncg, gid, fid, tcType
Integer Dummy, IsoErr, ZAs(250) !250 should be large enough for ZAs.
Integer C, iC, nC, CList(250) !250 should be large enough for CList
Pointer (pR8, R8) !This may not work on all platforms.
Real*8 Mass, R8, Q
Real*8 cgb(250), cs(250) !250 should be large enough.
Character Name*4, Path*256

yi = 1 !Neutron as incident particle.
gid = 93 !Group id for collapsing.
fid = 0 !Flux id for collapsing.
tcType = 1 !Pendlebury/Underhill transport correction

Call ndfinit(yi, Name, Date, ReqdMem) !Open the ndf1 file.
Print *, ’Opening ndf file ’, Name, ’ with date = ’, Date
Call ndfinfo(Path) !Get full path of opened ndf file.
Print *, ’path = ’, Path
Call ndf_malloc(pR8, 8 * ReqdMem) !Get memory (an undocumented routine).
Call ndfbuff(pR8) !Pass work memory to ndf.
Call ndftrcorr(tcType) !Set the transport correction method.
Call ndfidog(gid, cgb, ncg, Dummy) !Get group from bdfls file.
Call ndfgroup(cgb, ncg, fid) !Set collapsing.
Call ndfistab(ZAs, nZAs) !Get list of targets.

Do iZA = 1, nZAs !Loop over target list.
Call ndfiso(ZAs(iZA), IsoErr) !Select next target.
Call ndfatw(Mass) !Get targets mass.
Print *, ’Processing ZA = ’, ZAs(iZA), ’. Mass = ’, Mass, ’ AMU.’
Call ndfreact(CList, nC) !Get list of reactions for current target.
C = -1
Do iC = 1, nC !Loop over reactions.

If(C .ne. CList(iC)) Then !Do only if different C-value.
C = CList(iC)
Call ndfrxs(C, cs, Q, 0) !Total cross-section for reaction C.

18 7 NDF ACCESS ROUTINES

Print *, ’C = ’, C, ’ Q = ’, Q
Print ’(51pe18.10)’, (cs(i), i = 1, ncg)

EndIf
EndDo

EndDo

Call ndfclose() !Close the ndf file.
End

The ndf routine ndf malloc is used for internal testing and is not guaranteed to work on all
systems. The above example uses ”Cray pointers” (the statement starting with ”Pointer”) which are
not supported by all FORTRAN compilers. The following FORTRAN code will not work as the routine
ndfbuff requires a pointer to a pointer (probably requiring a FORTRAN compiler that supports ”Cray
pointers”).

Real*8 R8(1000000)

Call ndfinit(yi, Name, Date, ReqdMem)
Call ndfbuff(R8) ! This does not work.

7.2 Example of C usage

The following C example demonstrates how to open a file and loop through all the targets to print out
their ZA, mass and the total cross-section for each reaction type.

#include <stdio.h>
#include <ndf.h>

main() {

int yi = 1, iZA, nZAs, *ZAs, i;
int ncg, gid = 93, fid = 0, iC, nC, C, *CList;
double cgb[250], cs[250], Q; /* 250 should be large enough. */
char name[5], Path[256];
CorrectionTypes tcType = endf_LLNL; /* LLNL transport correction. */

printf("\nOpening ndf file ndf%d with date = %d\n",
yi, ndfcopen(yi, name));

ndfcinfo(Path, sizeof(Path));
printf("Path = %s\n", Path);
ndfctrcorr(tc_Type); /* Set the transport correction method. */
ncg = ndfcidog(gid, cgb); /* Get group from bdfls file. */
ndfcgroup(ncg, cgb, fid); /* Set collapsing. */

7.3 Summary of FORTRAN routines 19

nZAs = ndfcistab(&ZAs); /* Get list of targets. */
for(iZA = 0; iZA < nZAs; iZA++) { /* Loop over target list. */

ndfciso(ZAs[iZA]); /* Select next target. */
printf("\nProcessing ZA = %d. Mass = %e AMU.\n",

ZAs[iZA], ndfcatw());
nC = ndfcreact(&CList); /* Get list of reactions for current target. */
C = -1;
for(iC = 0; iC < nC; iC++) { /* Loop over reactions. */

if(C != CList[iC]) { /* Do only if different C-value. */
C = CList[iC];
Q = ndfcrxs(C, 0, cs); /* Total cross-section for reaction C. */
printf("C = %2d Q = %e\n", C, Q);
for(i = 0; i < ncg; i++) {

printf("%18.10e\n", cs[i]);
}

}
}

}
ndfcclose(); /* Close the ndf file. */

}

7.3 Summary of FORTRAN routines

ndfaccess To select a ndfyi data file other then the default.
ndfatw Returns the mass for the current target in AMU.
ndfbuff Provide memory allocated by the user to the ndf routines.
ndfclose Closes the opened ndfyi file.
ndfcorrec Returns the transport-correcting cross-section for the current target.
ndfed Returns the deposited energy for the requested transportable outgoing

particle for the current target.
ndfemax Returns the total available energy for the current target.
ndfep Returns the production energy for the current target.
ndffism Returns the fission matrix for the current target.
ndffisx Returns the fission < νσ >g for the current target.
ndfflxw Returns the collapsed flux weights for l = 0.
ndfflxw l Returns the collapsed flux weights for the requested Legendre order.
ndffsp Returns the normalized fission spectrum for the current target.
ndfgid Returns the group id of the uncollapsed energy boundaries of the incident

particle.
ndfgp Returns the uncollapsed energy boundaries of the incident particle.
ndfgroup Provides the user supplied information needed for collapsing of the data.
ndfidog Reads an energy group from a bdfls file.
ndfifsp Returns a flag indicating whether or not fission data is present.
ndfinfo Returns the path of the opened ndfyi file.
ndfinit Opens an ndfyi file.

20 7 NDF ACCESS ROUTINES

ndfiso Selects a target from the opened ndfyi file.
ndfistab Returns the list of targets in the opened ndfyi file.
ndfmxorder Returns the maximum Legendre order in the opened ndfyi file.
ndfmxorder tc Returns the maximum Legendre order allowed by the current transport

correction method.
ndfncorrec Returns the length of data in ’double’ words required by ndfcorrec.
ndfngroup Returns the number of collapsed groups.
ndfngroups Returns the number of uncollapsed groups.
ndfnistab Returns the number of targets in the opened ndfyi file.
ndfnmaxgps Returns the largest group size used in processing the opened ndfyi file.
ndfnppyos Returns the number of transportable outgoing particles for which a

production transfer matrix exist for the current target.
ndfnprod Returns the number of outgoing particles produced by the requested reaction

for the current target.
ndfnreact Returns the number of reactions for the current target.
ndfnrxs Returns the number of reactions of type C for the current target.
ndfnyos Returns the number of transportable outgoing particles for the current target.
ndfpmat Returns the collapsed production transfer matrix and the corrected,

collapsed, deposited energy.
ndfppmatrix Returns the uncollapsed production transfer matrix for the requested

outgoing particle for the current target.
ndfppyos Returns the list of transportable outgoing particles for which there are

production transfer matrices for the current target.
ndfprod Returns the ZA and multiplicity lists for particles produced by the requested

reaction for the current target.
ndfreact Returns a list of C-values for the reactions for the current target.
ndfrxs Returns the requested reaction’s cross-section data for the current target.
ndfrxslevel Returns S-, Q-, X1-, X2-, X3-, Qeff -values and the cross-section for

the requested level of the requested reaction for the current target.
ndfrxslist Returns a list of S-, Q-, X1-, X2-, X3- and Qeff -values for the requested

reaction for the current target.
ndfsig Returns the total cross-section (transport corrected), interaction transfer

matrix (yi → yo for yi = yo transport corrected),
energy deposited by yo and the transport correcting cross-section for
the requested Legendre order for the current target.

ndfsp Returns the group speeds for the opened ndfyi file.
ndftotal Returns the uncorrected total cross-section for the current target.
ndftransfer Returns the uncollapsed, uncorrected interaction transfer matrix for the

requested Legendre order for the current target.
ndftrcorr Sets the desired transport correction method.
ndfwsp Returns the collapsed normalized l = 0 flux.
ndfyo Returns the jth particle’s id from the particle directory of the global

data section.
ndfyos Returns a list of transportable outgoing particles with energy deposit data for

the current target.

7.4 FORTRAN routines 21

ndfyo gid Returns the group id for the requested outgoing particle.
ndfyo info Returns the number of energy groups, nh, and the conservation flag, iecflg,

for the requested transportable outgoing particle.

7.4 FORTRAN routines

ndfaccess

Purpose:
To select a ndfyi data file other then the default.

FORTRAN Calling:
Call ndfaccess(yi, libnam, Version, grptype, subpath)

Integer yi i N/A Id of the incident particle (i.e., yi)
Character*(*) libnam i N/A Evaluated data library name (e.g., ’endl’)
Character*(*) Version i N/A Version of evaluated data (e.g., ’991129’)
Character*(*) grptype i N/A Suffix added to file name (e.g., ’175’)
Character*(*) subpath o N/A Returned string of sub-directory

In default mode, ndfinit looks for the requested ndfyi data file in the current working directory. If
the file is not found, ndfinit looks in the directory pointed to by the environment variable NDFPATH.
If NDFPATH is not defined or the requested ndfyi data file does not exist in the directory pointed to
by NDFPATH, then ndfinit looks in the directory

/usr/gapps/data/nuclear/current/ndf
for the requested file. This final location can be changed by calling ndfaccess before calling ndfinit.
If ndfaccess is called first, then ndfinit looks for the file

/usr/gapps/data/nuclear/libnam/Version/ndf/ndfyi.grptype,
assuming the file was not found in the current working directory or in the directory pointed to by
NDFPATH. For example,

Call ndfaccess(1, "endl", "endl94", "230", subpath)
will cause ndfinit to look for the file

/usr/gapps/data/nuclear/endl/endl94/ndf/ndf1.230 .
Not calling ndfaccess is equivalent to calling it as

Call ndfaccess(1, "current", "", "", subpath) .
A call to ndfaccess only modifies the search path for the specified incident particle. Thus, to get

neutron (yi = 1) and gamma (yi = 7) data from the same location, ndfaccess must be called twice
(once with yi = 1 and once with yi = 7). Calling ndfaccess with different parameters for different
incident particles is valid. This allows one to mix and match data for different incident particles.

Fatal Message(s): Prints a fatal message if yi is invalid.

Related routines: None: ndfinit

ndfatw

Purpose:

22 7 NDF ACCESS ROUTINES

Returns the mass for the current target in AMU.

FORTRAN Calling:
Call ndfatw(mass)

Real*8 mass o AMU Atomic mass in AMU for the current target

This routine returns the current target’s mass in atomic mass units (AMU).

Related routines: ndfiso:

ndfbuff

Purpose:
Provide memory allocated by the user to the ndf routine.

FORTRAN Calling:
Call ndfbuff(Pointer)

Real*8 Pointer i N/A Pointer to pointer to memory allocated by the user

Most ndf routines require the user to allocate memory to read and process the data. The last
argument in the ndfinit routine is the amount of memory in 8-byte words that is needed to process
the data. After calling ndfinit the user must allocate the required memory and pass the pointer to
ndfbuff before calling most ndf routines. As example,

Integer Date, ReqdMem
Character Name*(4)
Real*8 DummyArray
Pointer (p, DummyArray(*)) ! This may not work on all systems.

Call ndfinit(1, Name, Date, ReqdMem)
p = GetBytes(8 * ReqdMem) ! User routine to allocate memory.
Call ndfbuff(p)

Most ndf routines cannot be called until ndfinit, ndfbuff and then ndfiso are called.
Related routines: ndfinit:

ndfclose

Purpose:
Closes the opened ndfyi file.

FORTRAN Calling:
Call ndfclose()

To properly close the opened ndfyi file ndfclose must be called. Only one ndfyi file can be opened
at a time.

7.4 FORTRAN routines 23

Fatal Message(s): Calling ndfinit twice without calling ndfclose between the two ndfinit calls will
cause a fatal message to be printed.

Related routines: ndfinit:

ndfcorrec

Purpose:
Returns the transport-correcting cross-section for the current target.

FORTRAN Calling:
Call ndfcorrec(tccs)

Real*8 tccs(ncg × (lMax + 1)) o barn The transport-correcting cross-section

For each target, the total cross-section and the diagonal of the yi → yi interaction transfer matrix
are transport corrected. This routine returns the transport-correcting cross-section; that is, the cross-
section that is subtracted from the total cross-section and the diagonal of the interaction transfer
matrix to produce the transport-corrected total cross-section and the transport corrected interaction
transfer matrix. There are ncg values (see ndfngroup) for each l-order (l = 0, ..., lMax). The data
are arranged serially with the first ncg points being the l = 0 data, the second being the l = 1 data
and so on. The last ncg points are only valid when the transport correction method is e ndfnone or
e ndfLLNL (see ndfmxorder tc or ndfcmxorder tc). Note, as per Table 3 the l = 0 data is tc1, the
l = 1 data is tc2, ... and the l = lMax data is tclMax+1.

Related routines: ndfiso: ndfgroup, ndfngroup, ndfsig, ndftrcorr, ndfmxorder, ndfmxorder tc

ndfed

Purpose:
Returns the deposited energy for the requested transportable outgoing particle for the current

target.

FORTRAN Calling:
Call ndfed(ed, yo)

Real*8 ed(ncg) o MeV-barn yo’s deposit energy
Integer yo i N/A Id of the transportable outgoing particle

The deposit energy for yo is returned in ed, where yo is the id of the transportable outgoing particle
(e.g., yo = 1 is a neutron). The are ncg data points returned (see ndfngroup). If the requested yo does
not exist for the current target ndfed prints a fatal message. Use ndfnyos and ndfyos to determine
the allowable yos. In general, ndfsig, ndfpmat, ndfsig, ndfpmat should be used to obtain the
deposition energy for each particle being transported.

Fatal Message(s): Prints a fatal message if the requested yo does not exist for the current target.

Related routines: ndfiso: ndfnyos, ndfyos, ndfnppyos, ndfppyos

24 7 NDF ACCESS ROUTINES

ndfemax

Purpose:
Returns the total available energy for the current target.

FORTRAN Calling:
Call ndfemax(em)

Real*8 em(ncg) o MeV-barn Available energy

The total available energy is returned in em. There are ncg data points (see ndfngroup).

Related routines: ndfiso:

ndfep

Purpose:
Returns the production energy for the current target.

FORTRAN Calling:
Call ndfemax(ep)

Real*8 ep(ncg) o MeV-barn Production energy

The production energy is returned in ep. There are ncg data points (see ndfngroup).

Related routines: ndfiso:

ndffism

Purpose:
Returns the fission matrix for the current target.

FORTRAN Calling:
Call ndffism(fm, iFlag)

Real*8 fm(ncg × ncg) o barn Fission matrix
Integer iFlag o N/A Indicates whether or not data is present

The fission matrix, if present (iFlag = 0 is returned), for the current target is returned in fm. There
are ncg × ncg data points (see ndfngroup). If no fission data is present then iFlag = 1 is returned.
This data only exist for neutron as an incident particle (i.e., ndf1) and only for some of its targets.

Related routines: ndfiso: ndffisx, ndffsp

ndffisx

Purpose:
Returns the fission < νσ >g for the current target.

7.4 FORTRAN routines 25

FORTRAN Calling:
Call ndffisx(fnubar, iFlag)

Real*8 fnubar(ncg) o barn Fission nubar data
Integer iFlag o N/A Indicates whether or not data is present

The average number of neutrons produced by fission < νσ >g, if present (iFlag = 0 is returned),
for the current target is returned in fnubar. There are ncg data points (see ndfngroup). If no fission
data is present then iFlag = 1 is returned. This data only exist for neutron as an incident particle (i.e.,
ndf1) and only for some of its targets.

Related routines: ndfiso: ndffism, ndffsp

ndfflxw

Purpose:
Returns the collapsed flux weights for the l = 0 Legendre order.

FORTRAN Calling:
Call ndfflxw(flux)

Real*8 flux(ncg) o N/A l = 0 collapsed flux weights

The l = 0 Legendre order, collapsed flux weights are returned in flux. This routine can only be
called after ndfgroup has been called. This is equivalent to calling ndfflxw l from FORTRAN as,

Call ndfflxw_l(0, flux)

(see routine ndfflxw l).
Related routines: ndfgroup: ndfflxw l

ndfflxw l

Purpose:
Returns the collapsed flux weights for the requested Legendre order.

FORTRAN Calling:
Call ndfflxw l(l, flux)

Integer l i N/A Requested Legendre order
Real*8 flux(ncg) o N/A lth Legendre order collapsed flux weights

The lth Legendre order, collapsed flux weights are returned in flux. There are ncg data points (see
ndfngroup). This routine can only be called after ndfgroup has been called.

Fatal Message(s): Prints a fatal message if the requested l-order is invalid.

Related routines: ndfgroup: ndfflxw

26 7 NDF ACCESS ROUTINES

ndffsp

Purpose:
Returns the normalized fission spectrum for the current target.

FORTRAN Calling:
Call ndffsp(FissSpec)

Real*8 FissSpec(ncg) o N/A Normalized fission spectrum

The lowest energy group of the incident neutron of the fission matrix, if present, for the current
target is normalized and returned in FissSpec. There are ncg data points (see ndfngroup). If no
fission data is present then this routine prints a fatal message. If the lowest energy data are all zero
than FissSpec is filled with ncg ones. This data only exist for neutron as an incident particle (i.e.,
ndf1) and only for some of its targets.

Fatal Message(s): Prints a fatal message if the current target has no fission matrix.

Related routines: ndfiso: ndfifsp, ndffism, ndffisx

ndfgid

Purpose:
Returns the group id of the uncollapsed energy boundaries of the incident particle.

FORTRAN Calling:
gid = ndfgid()

Integer gid f N/A Uncollapsed group id for the incident particle

When an ndfyi file is generated the data is grouped along the energy of the incident particle. The
boundaries for energy grouping are specified using an energy group found in the bdfls file. The id of
this energy group is returned by ndfgid.

Related routines: ndfinit: ndfgp

ndfgp

Purpose:
Returns the uncollapsed energy boundaries of the incident particle.

FORTRAN Calling:
Call ndfgp(gb)

Real*8 gb(ng + 1) o MeV Uncollapsed energy boundaries for the incident particle

The uncollapsed energy boundaries of the incident particle are returned. There are ng + 1 data
points returned since ng groups requires ng + 1 boundaries.

7.4 FORTRAN routines 27

Related routines: ndfbuff: ndfgid

ndfgroup

Purpose:
Provides the user supplied information needed for collapsing of the data.

FORTRAN Calling:
Call ndfgroup(cgb, ncg, fid)

Real*8 cgb(ncg + 1) i MeV Boundaries for the collapsed group
Integer ncg i N/A Number of collapsed groups
Integer fid i N/A bdfls id of the flux to use for collapsing

The ndf routines allow collapsing of the data to a smaller energy group using a flux from the bdfls
file for weighting of the uncollapsed group data. Collapsing is initiated by calling ndfgroup. This
smaller collapsing energy group must be a subset of the original energy group; that is, every boundary
in the smaller group must have a corresponding boundary in the original group. The smaller group
can be a user specified group that is a subset of the original group. The user can use ndfidog to read
in a group from a bdfls file. The flux used to weight the collapsing is given by the fid argument. If fid
= 0 then the flux in the ndfyi file is used; otherwise, the flux with id = fid in the bdfls file is used.

Fatal Message(s): Prints a fatal message if the collapsing group is not a subset of the group used to
generate the file, if the bdfls file cannot be found, or if the requested flux is not found in the bdfls file.

Related routines: ndfbuff: ndfidog, ndfngroup

ndfidog

Purpose:
Reads an energy group from a bdfls file.

FORTRAN Calling:
Call ndfidog(gid, gb, ngs, Dummy)

Integer gid i N/A Id of the energy group to input from the bdfls file
Real*8 gb(ngs + 1) o MeV Boundaries of returned group
Integer ngs o N/A Number of returned groups
Real*8 Dummy u N/A Not used

The group with id = gid is read in from the bdfls file and returned in gb. There are ngs + 1 data
points returned in gb. This routine prints a fatal message if the bdfls file cannot be opened or the
requested group id is not found in the bdfls file.

Fatal Message(s): Prints a fatal message if the requested group is not found in the bdfls file, or if
the bdfls file cannot be opened.

Related routines: None: ndfgroup

28 7 NDF ACCESS ROUTINES

ndfifsp

Purpose:
Returns a flag indicating whether or not fission data is present.

FORTRAN Calling:
Flag = ndfifsp()

Integer Flag f N/A Flag indicating whether or not ndffsp will print a fatal message

This routine allows the user to determine whether or not fission data is present for the current
target, without calling ndffsp which will print a fatal message if no fission spectrum data is present
for the current target. It returns -1 if no fission spectrum data is present, 0 if the fission spectrum for
the lowest incident-energy-group is zero, and 1 otherwise.

Related routines: ndfiso: ndffsp

ndfinfo

Purpose:
Returns the path of the opened ndfyi file.

FORTRAN Calling:
Call ndfinfo(path)

Character*(*) path o N/A Path of the opened ndfyi file

The path of the opened ndfyi file is accessible by calling ndfinfo. Calling this routine is meaningful
only after an ndfyi file has been opened by calling ndfinit. The string is truncated if it is longer than
the length of path.

Related routines: ndfinit:

ndfinit

Purpose:
Opens an ndfyi file.

FORTRAN Calling:
Call ndfinit(yi, Name, Date, ReqdMem)

Integer yi i N/A Id of the incident particle
Character*(*) Name o N/A File name (e.g., ’ndf1’)
Integer Date o N/A Date in the ndfyi file
Integer ReqdMem o N/A Memory in 8-byte words needed by ndf routines

This routine opens a ndfyi file for input, it must be called before any other ndf routine, except
ndfaccess and ndfidog. The file to be opened is determined by the first parameter which specifies
the incident particle’s id (e.g., yi = 1 for neutron). The name of the file to be opened is ’ndf’ + { yi

7.4 FORTRAN routines 29

converted to a character } (e.g., for yi = 3 the file name is ndf3). See ndfaccess for the directories
ndfinit searches to find the ndfyi file. Name : is the 4 character string name of the file (e.g., ’ndf5’).
Date is a date in the form YYMMDD (e.g., 991031 for 31-Oct-1999) stored in the file. Originally this
date was the day on which the file was processed. Currently, as of about 1-Oct-2000, the date is used
to uniquely identify a file. Dates in files generated before about 1-Oct-2000 are not guaranteed to be
unique. ReqdMem is the amount of memory in 8-byte words that the user must allocate and pass to
ndfbuff. This memory is used internally by the ndf accessing routines to read in the data and for work
space. Most ndf routines cannot be called until ndfinit, ndfbuff and then ndfiso are called.

Fatal Message(s): Prints a fatal message if yi is invalid, if the file could not be opened, or if a file is
already opened.

Related routines: None: ndfaccess, ndfbuff, ndfinfo, ndfclose

ndfiso

Purpose:
Selects a target from the opened ndfyi file.

FORTRAN Calling:
Call ndfiso(ZA, Flag)

Integer ZA i N/A ZA = (1000 × Z + A) of the target to select
Integer Flag o N/A Flag indicating if target was found in file

This routine is used to select the target for which data is requested. Most ndf routines cannot be
called until ndfinit, ndfbuff and then ndfiso are called. If the requested ZA is found then Flag =
0, otherwise Flag = 1. Only one target is selected at a time. Whenever ndfiso is called the previous
target’s data, if any, is lost. For the ndf7 file (i.e., yi = 7) all ZAs except 99120, fission target, are
converted to 1000 × Z (i.e., natural isotope) before the target is selected (e.g., ZA = 6012 if converted
to 6000). The assumption being that all isotopes for a given Z have the same electron shell structure
and therefore the same photon interaction characteristics.

Related routines: ndfbuff: ndfistab, ndfnistab

ndfistab

Purpose:
Returns the list of targets in the opened ndfyi file.

FORTRAN Calling:
Call ndfistab(ZAList, nZAs)

Integer ZAList(nZAs) o N/A List of targets (ZAs)
Integer nZAs o N/A Number of ZAs in ZAList

This routine returns the list of all targets in the opened ndfyi file. The number of ZAs returned
can also be obtained by calling ndfnistab.

30 7 NDF ACCESS ROUTINES

Related routines: ndfbuff: ndfiso, ndfnistab

ndfmxorder

Purpose:
Returns the maximum Legendre order in the opened ndfyi file.

FORTRAN Calling:
Call ndfmxorder(lMax)

Integer lMax o N/A Maximum Legendre order

Each ndfyi file contains some data represented as a Legendre expansion (e.g., interaction transfer
matrix). The expansions are truncated, and the last Legendre order present for the current target can
be obtained by calling ndfmxorder. Typically, the maximum order is the same for all targets.

Related routines: ndfiso: ndfcorrec, ndfmxorder tc, ndfsig, ndftrcorr

ndfmxorder tc

Purpose:
Returns the maximum Legendre order allowed by the current transport correction method.

FORTRAN Calling:
lm = ndfmxorder tc()

Integer lm f N/A Maximum Legendre order allowed by transport correction method

Each ndfyi file contains some data represented as a Legendre expansion (e.g., interaction transfer
matrix). The Legendre expansion is truncated, and the last Legendre order present for the current
target can be obtained by calling ndfmxorder. This maximum Legendre order can be used when the
transport correction method is ”No correction” or the ”Legacy LLNL correction”. For the ”Pendle-
bury/Underhill correction” and the ”Ferguson correction” the maximum Legendre order is lMax - 1.
This routine returns the correct maximum Legendre order allowed by the current transport correction
method.

Related routines: ndfiso: ndfcorrec, ndfmxorder, ndfsig, ndftrcorr

ndfncorrec

Purpose:
Returns the length of data in ’double’ words required by ndfcorrec.

FORTRAN Calling:
Call ndfncorrec(len)

Integer len o N/A Length of data required by ndfcorrec

7.4 FORTRAN routines 31

The length of the data returned by ndfcorrec can be obtained by calling this routine. This can be
useful if memory for the transport-correcting cross-section returned by ndfcorrec must be allocated
before calling ndfcorrec. Calling ndfncorrec is equivalent to the following FORTRAN code,

Call ndfmxorder(lMax)
len = (lMax + 1) * ndfngroup()

For e ndfPendlebury and e ndfFerguson transport correction methods, the amount of useful data is
’lMax * ndfngroup()’; however, the number returned by ndfncorrec is the requirement amount of
double’ words required by ndfcorrec, which is always ’(lMax + 1) * ndfngroup()’.

Related routines: ndfiso: ndfcorrec, ndfngroup, ndfmxorder

ndfngroup

Purpose:
Returns the number of collapsed groups.

FORTRAN Calling:
n = ndfngroup()

Integer n o N/A Number of collapsed groups

If ndfgroup has been called then the number of groups for the incident particle’s collapsed group
is returned. Else, the number of groups for the incident particle’s uncollapsed group is returned.

Related routines: ndfinit: ndfgroup, ndfngroups

ndfngroups

Purpose:
Returns the number of uncollapsed groups.

FORTRAN Calling:
Call ndfngroups(ng)

Integer ng o N/A Number of uncollapsed groups

The number of groups for the incident particle’s uncollapsed group is returned.

Related routines: ndfinit: ndfgroup, ndfngroup

ndfnistab

Purpose:
Returns the number of targets in the opened ndfyi file.

FORTRAN Calling:

32 7 NDF ACCESS ROUTINES

nZAs = ndfnistab()

Integer nZAs f N/A Number of targets in the opened ndfyi file

The number of targets in the opened ndfyi file can be obtained by calling this routine. This can
be useful if memory for the target list must be allocated before calling ndfistab.

Related routines: ndfbuff: ndfiso, ndfistab

ndfnmaxgps

Purpose:
Returns the largest group size used in processing the opened ndfyi file.

FORTRAN Calling:
Call ndfnmaxgps()

’return value’ f N/A Largest group size used in processing the opened ndfyi file

The groups used in grouping the various transportable particles can be difference and can have
difference sizes. This routine returns the size of the largest group and may be useful if memory must
be allocated for a production matrix.

Related routines: ndfbuff: ndfngroup, ndfngroups, ndfpmat, ndfppmatrix

ndfnppyos

Purpose:
Returns the number of transportable outgoing particles for which a production transfer matrix exist

for the current target.

FORTRAN Calling:
nyos = ndfnppyos()

Integer nyos f N/A Number of transportable outgoing particles

The number of transportable outgoing particles with a production transfer matrix for the current
target can be obtained by calling this routine. This can be useful if memory for the transportable
outgoing particle with production transfer matrices list must be allocated before calling ndfppyos.
The difference between ndfnyos and ndfnppyos is 1, since ndfnyos includes the incident particle;
whereas, ndfnppyos does not (as the incident particle’s transfer matrix, called the interaction transfer
matrix, is obtained using ndfsig instead of ndfpmat).

Related routines: ndfiso: ndfppyos, ndfnyos, ndfyos, ndfpmat

ndfnprod

Purpose:

7.4 FORTRAN routines 33

Returns the number of outgoing particles produced for the requested reaction for the current target.

FORTRAN Calling:
n = ndfnprod(C)

Integer C i N/A C-value for the requested reaction
Integer n f N/A Number of outgoing particles produced for reaction C

This routine can be useful if memory for the outgoing produced particle’s ZA and multiplicity lists
must be allocated before calling ndfprod. See ndfprod for more details. If the requested C-value is
not in the reaction list for the current target then 0 is returned. Note, ndfprod returns a list of all
particles produced and not just the transportable ones.

Related routines: ndfiso: ndfprod

ndfnreact

Purpose:
Returns the number of reactions for the current target.

FORTRAN Calling:
n = ndfnreact()

Integer n f N/A Number of reactions for the current target

For each target there is a list of reactions. A reaction is a unique combination of C-, S-, Q-, X1-,
X2-, X3-, and Qeff -values (see Reaction specific information in section 5.2). This routine returns
the number of unique reactions for the current target. This can be useful if memory for the reaction
list must be allocated before calling ndfreact.

Related routines: ndfiso: ndfreact

ndfnrxs

Purpose:
Returns the number of reactions of type C for the current target.

FORTRAN Calling:
n = ndfnrxs(C)

Integer C i N/A C-value for the requested reaction
Integer n f N/A Number of reactions of type C

For each target there is a list of reactions. A reaction is a unique combination of C-, S-, Q-, X1-,
X2-, X3-, and Qeff -values (see Reaction specific information in section 5.2). This routine returns
the number of reactions of type C for the current target.

Related routines: ndfiso: ndfrxs, ndfrxslist, ndfrxslevel

34 7 NDF ACCESS ROUTINES

ndfnyos

Purpose:
Returns the number of transportable outgoing particles for the current target.

FORTRAN Calling:
n = ndfnyos()

Integer n f N/A Number of transportable outgoing particles

For each target there is a list of possible transportable outgoing particles. For example, with neutron
as incident particle, a specific target in a ndfyi file may have neutrons, protons, deuterons and gammas
as transportable outgoing particles. In this case ndfnyos would return 4. (See routine ndfnppyos for
more details.)

Related routines: ndfiso: ndfyos, ndfed, ndfppyos, ndfnppyos

ndfpmat

Purpose:
Returns the collapsed production transfer matrix and the corrected, collapsed, deposited energy.

FORTRAN Calling:
Call ndfpmat(matrix, ed, yo, ch, nch)

Real*8 matrix(nch × ncg) o barn yi → yo production transfer
matrix for yi 6= yo

Real*8 ed(ncg) o MeV-barn Corrected energy deposited by yo
Integer yo i N/A Requested outgoing particle (yo 6= yi)
Real*8 ch(nch + 1) i MeV Outgoing particle’s collapsed group

boundaries
Integer nch i N/A Number of groups in ch

This routine returns the collapsed production transfer matrix (i.e., yi → yo for yi 6= yo) and the
corrected deposited energy for yo = yo. The outgoing particle’s deposition energy is collapsed to ch.
To obtain ncg call ndfngroup. If iecflg = 3, see ndfyo info, the deposited energy returned by ndfed
is corrected so that the outgoing particle’s number and energy are conserved. This corrected energy is
returned in ed. This routine returns all zeros in matrix and energy if the requested yo is not present
for the current target. Use ndfsig or ndftransfer to obtain the interaction transfer matrix (i.e., yi →
yo for yi = yo).

Fatal Message(s): Prints a fatal message if yo is not present in the particle directory of the global
data section.

Related routines: ndfiso: ndfnppyos, ndfppyos, ndfyo gid, ndfed, ndfppmatrix, ndfsig

ndfppmatrix

7.4 FORTRAN routines 35

Purpose:
Returns the uncollapsed production transfer matrix for the requested outgoing particle for the

current target.

FORTRAN Calling:
Call ndfppmatrix(yo, matrix, nh)

Integer yo i N/A Requested outgoing particle (yo 6= yi)
Real*8 matrix(nh × ng) o barn yi → yo production transfer matrix for yi 6= yo

Integer nh o N/A Number of groups representing the outgoing
particle’s energy groups

The uncollapsed production transfer matrix (i.e., yi → yo for yi 6= yo) for the requested transportable
outgoing particle for the current target is returned. See ndfppyos for a list of transportable outgoing
particle for the current target.

Fatal Message(s): Prints a fatal message if the requested transportable outgoing particle is not
present.

Related routines: ndfiso: ndfpmat, ndfnppyos, ndfppyos

ndfppyos

Purpose:
Returns the list of transportable outgoing particles for which there are production transfer matrices

for the current target.

FORTRAN Calling:
Call ndfppyos(yoList, nyos)

Integer yoList(nyos) o N/A List of outgoing particles for the current target
Integer nyos o N/A Number of outgoing particles returned

For each target there is a list of possible transportable outgoing particles. For example, with neutron
as incident particle, a specific target in a ndfyi file may have neutrons, protons, deuterons and gammas
as transportable outgoing particles. In this case ndfyos would return yo = { 2, 3, 7 } and n = 3, since
the transfer matrix for yo = yi is not included. The transfer matrix for yo = yi, called the interaction
transfer matrix, is obtained using ndfsig or ndftransfer.

Related routines: ndfiso: ndfnppyos, ndfpmat, ndfppmatrix

ndfprod

Purpose:
Returns the ZA and multiplicity lists for particles produced by the requested reaction for the current

target.

FORTRAN Calling:

36 7 NDF ACCESS ROUTINES

Call ndfprod(C, n, ZAList, MList)

Integer C i N/A C-value for the reaction
Integer n o N/A Number of outgoing particles produced for reaction C
Integer ZAList(n) o N/A List of ZAs
Integer MList(n) o N/A List of multiplicities

For each incident particle, target and reaction combination in a ndfyi file, there is a list of outgoing
particles produced and their multiplicities. For example, when a neutron is incident on 239Pu, ZA =
94239, a possible reaction is two neutrons out, C = 12:

n + 239Pu → n + n + 238Pu .
For this case, ndfprod will return n = 2, ZAList = {1, 94238} and MList = {2, 1}. This means
that two neutron (i.e., ZAList(1) = 1 and MList(1) = 2) and one 238Pu (i.e., ZAList(2) = 94238 and
MList(2) = 1) are produced. Note, in this reaction there is no mention of the gammas produced as
they are not included in the particle production list. Information about the gammas may be given
in the production transfer matrix and the energy deposited to the outgoing particle (see ndfppyos,
ndfpmat and ndfed).

For neutrons, the multiplicity may be zero. In this case, the outgoing neutron information is
obtained by calling ndffisx. For example, calling ndfprod for a typical fission reaction, C = 15, of
target 239Pu may return n = 2, ZAList = {1, 99120} and MList = {0, 2} (ZA = 99120 is the special ZA
code for prompt fission products and ZA = 99125 is the special ZA code for delayed fission products).
In this example 2 prompt fission products are produced and MList(1) = 0 implies that ndffisx must
be called to get the multiplicity data for neutrons.

Fatal Message(s): Prints a fatal message if the requested C-value is not in the reaction list for the
current target.

Related routines: ndfiso: ndfnprod

ndfreact

Purpose:
Returns a list of C-values for the reactions for the current target.

FORTRAN Calling:
Call ndfreact(CList, n)

Integer CList(n) o N/A C-value for each reaction
Integer n o N/A Number of reactions returned

For each target there is a list of reactions. A reaction is a unique combination of C-, S-, Q-, X1-,
X2-, X3-, and Qeff -values (see Reaction specific information in section 5.2). This routine returns
the C-value for each reaction and the number of reactions for the current target. For example, for one
target in a ndf1 file the following was returned; CList = { 10, 11, 11, 11, 11, 11, 11, 11, 12, 13, 14, 15,
46, 46 } and n = 14.

Related routines: ndfiso: ndfnreact, ndfrxs, ndfrxslevel, ndfrxslist

7.4 FORTRAN routines 37

ndfrxs

Purpose:
Returns the requested reaction’s collapsed cross-section data for the current target.

FORTRAN Calling:
Call ndfrxs(C, cs, Q, n)

Integer C i N/A C-value of the requested reaction
Real*8 cs(ncg) o barn Collapsed cross-section for this reaction
Real*8 Q o MeV Q-value of reaction
Integer n i N/A Number of reactions with this C-value to include

For each unique combination of C-, S-, Q-, X1-, X2-, X3-, and Qeff -values (see Reaction specific
information in section 5.2), for a given target in a ndfyi file, the cross-section is stored. For a specific
reaction type, specified by the C-value, ndfrxs will sum the cross-sections for the first n of these
reactions and return it in cs. If n = 0 then all reactions with this C-value are summed. The Q-value,
(i.e. Q and not Qeff in the list above) of the last reaction included in the sum is returned in Q. To
obtain ncg call ndfngroup.

Related routines: ndfiso: ndfnrxs, ndf, ndfrxslevel, ndfrxslist

ndfrxslevel

Purpose:
Returns S-, Q-, X1-, X2-, X3-, Qeff -values and the collapsed cross-section for the requested level of

the requested reaction for the current target.

FORTRAN Calling:
err = ndfrxslevel(C, L, S, Q, X1, X2, X3, Qeff, cs)

Integer C i N/A C-value for the requested reaction
Integer L i N/A Level for requested C-value
Integer S o N/A S-value for reaction
Real*8 Q o MeV Q-value for reaction
Real*8 X1 o Varies X1-value for reaction
Real*8 X2 o Varies X2-value for reaction
Real*8 X3 o Varies X3-value for reaction
Real*8 Qeff o MeV Qeff -value for reaction
Real*8 cs(ncg) o barns collapsed cross-section for reaction
Integer err f N/A 1 if requested C and L are present, 0 otherwise

The meanings and units for X1-, X2-, and X3-values depend on the S-value. There are ncg data
points return in cs (see ndfngroup). If no reaction for the requested C-value and level exist then err
= 0 is returned. L is an index for the level in the range 1 to the value returned by ndfnrxs.

Related routines: ndfiso: ndfrxs, ndfnrxs, ndfrxslist

38 7 NDF ACCESS ROUTINES

ndfrxslist

Purpose:
Returns a list of S-, Q-, X1-, X2-, X3- and Qeff -values for the requested reaction for the current

target.

FORTRAN Calling:
n = ndfrxslist(C, S, Q, X1, X2, X3, Qeff)

Integer C i N/A C-value for the requested reaction
Integer S(n) o N/A List of S-values for reaction
Real*8 Q(n) o MeV List of Q-values for reaction
Real*8 X1(n) o Varies List of X1-values for reaction
Real*8 X2(n) o Varies List of X2-values for reaction
Real*8 X3(n) o Varies List of X3-values for reaction
Real*8 Qeff(n) o MeV List of Qeff -values for reaction
Integer n f N/A Number of reactions of type C

The meanings and units for X1-, X2-, and X3-values depend on the S-value. If no reaction for the
requested C-value exist then n = 0 is returned. As example, if ndfrxslist is called with C = 42 for the
data of Table 4 then the following is returned: S = { 1, 1 }, Q = { -10.44, -10.44 }, X1 = { 0., 0.478 },
X2 = { 0., 0. }, X3 = { 0., 0. }, Qeff = { -10.439, -10.917 } and n = 2. If memory must be allocated
before calling ndfrxslist, the routine ndfnrxs can be called before ndfrxslist to obtain n.

Related routines: ndfiso: ndfrxs, ndfnrxs, ndfrxslevel

ndfsig

Purpose:
Returns the collapsed total cross-section (transport corrected), the collapsed interaction transfer

matrix (yi → yo for yi = yo transport corrected), the collapsed energy deposited by yo = yi and the
collapsed transport correcting cross-section for the requested Legendre order for the current target.

FORTRAN Calling:
Call ndfsig(tcs, ed, tm, tc, l)

Real*8 tcs(ncg) o barn Collapsed transport corrected total cross-section
Real*8 ed(ncg) o MeV-barn Collapsed corrected energy deposited by incident

particle type
Real*8 tm(ncg × o barn Collapsed transport corrected interaction

ncg × (l + 1)) transfer matrix
Real*8 tc(ncg) o barn Collapsed transport correcting cross-section
Integer l i N/A Requested Legendre order

This routine first calls other ndf routines to calculate the transport correcting cross-section for
Legendre order l + 1. Then, the transport corrected, total cross-section and the transport corrected
interaction transfer matrix (yi → yo for yi = yo) are calculated. All interaction transfer matrices for

7.4 FORTRAN routines 39

Legendre order 0 to l inclusive are transport corrected and returned. If iecflg = 3, see ndfyo info,
the deposited energy returned by ndfed is corrected so that outgoing particle number and energy are
conserved. (see ndfpmat) To obtain ncg call ndfngroup.

Fatal Message(s): Prints a fatal message if the request l-order is invalid.

Related routines: ndfiso: ndftotal, ndfed, ndfyo info

ndfsp

Purpose:
Returns the collapsed group speeds for the opened ndfyi file.

FORTRAN Calling:
Call ndfsp(speeds)

Real*8 speeds(ncg) o cm/sh Collapsed group speeds for the opened ndfyi file

This routine returns the collapsed group speeds for the opened ndfyi file. There are ncg data points
returned (see ndfngroup).

Related routines: ndfinit:

ndftotal

Purpose:
Returns the collapsed uncorrected total cross-section for the current target.

FORTRAN Calling:
Call ndftotal(tcs)

Real*8 tcs(ncg) o barn Collapsed uncorrected total cross-section for the current target

This routine returns the collapsed uncorrected total cross-section for the current target. There are
ncg data points returned (see ndfngroup).

Related routines: ndfiso: ndfsig

ndftransfer

Purpose:
Returns the uncollapsed, uncorrected interaction transfer matrix for the requested Legendre order

for the current target.

FORTRAN Calling:
Call ndftransfer(tm, l)

40 7 NDF ACCESS ROUTINES

Real*8 tm(ng × ng) o barn Uncollapsed, uncorrected interaction
transfer matrix for Legendre order l

Integer l i N/A Requested Legendre order

The uncollapsed, uncorrected interaction transfer matrix (i.e., yi → yi for yi = yo) for the requested
Legendre order for the current target is returned.

Fatal Message(s): Prints a fatal message if the requested Legendre order is not present.

Related routines: ndfiso: ndfpmat, ndfmxorder

ndftrcorr

Purpose:
Sets the desired transport correction method.

FORTRAN Calling:
Call ndftrcorr(c)

Integer c i N/A Desired transport correction method

The ndf routines allow for 4 difference transport correction methods. This routine sets the transport
correction method to c, as described in the following table.

c Maximum l Correction method
0 lMax No correction
1 lMax - 1 Pendlebury/Underhill correction (default)
2 lMax Legacy LLNL correction
3 lMax - 1 Ferguson correction

In this table the second column is the maximum Legendre order the user can request. The transport
correcting cross-section can be calculated to one greater than this Legendre order. For example, if lMax
= 3 and the correction method is Pendlebury/Underhill then ndfsig can only be called for l-order up
to 2. This routine must be called after each call to ndfinit, as ndfinit resets the internal flag to the
default.

Fatal Message(s): Prints a fatal message if an invalid transport correct method is requested.

Related routines: ndfinit:

ndfwsp

Purpose:
Returns the collapsed normalized l = 0 flux.

FORTRAN Calling:
Call ndfwsp(w)

Real*8 w(ncg) o N/A Collapsed normalized l = 0 flux

7.4 FORTRAN routines 41

This routine returns the collapsed normalized l = 0 flux. There are ncg data points returned (see
ndfngroup). It can only be called after ndfgroup has been called.

Fatal Message(s): Prints a fatal message if the l = 0 flux is all zeros.

Related routines: ndfgroup:

ndfyo

Purpose:
Returns the jth particle’s id from the particle directory of the global data section.

FORTRAN Calling:
yo = ndfyo(j)

Integer j i N/A The index of the requested particle’s id
Integer yo f N/A The jth particle id from particle directory

This routine can be used to loop over the particle directory of the global data section. To step
through the particles in the particle directory, start with j = 1 (FORTRAN indexing is used) and
increment it in a while loop until yo = -1 is returned. For example,

n = 0
yo = 0
Do While(yo .ne. -1)

yo = ndfyo(n + 1) ! FORTRAN indexing.
If(yo .ne. -1) n = n + 1

EndDo
Print *, ’n = ’, n

prints the number of particles in the particle directory of the global data section.

Related routines: ndfbuff:

ndfyos

Purpose:
Returns a list of transportable outgoing particles with energy deposit data for the current target.

FORTRAN Calling:
Call ndfyos(yo, n)

Integer yo(n) o N/A List of transportable outgoing particles with energy deposit data
Integer n o N/A Number of transportable outgoing particles with energy

deposit data

For each target there is a list of possible transportable outgoing particles. For example, with neutron
as incident particle, a specific target in a ndfyi file may have neutrons, protons, deuterons and gammas
as transportable outgoing particles. In this case ndfyos would return yo = { 1, 2, 3, 7 } and n = 4.

42 7 NDF ACCESS ROUTINES

Related routines: ndfiso: ndfnyos, ndfed, ndfppyos, ndfnppyos

ndfyo gid

Purpose:
Returns the group id for the requested outgoing particle.

FORTRAN Calling:
gid = ndfyo gid(yo)

Integer yo i N/A The requested outgoing particle
Integer gid f N/A The group id used for the outgoing particle

The uncollapsed production transfer matrix is grouped in incident and outgoing particle energies.
The uncollapsed grouping for the outgoing particle energies is contained in the bdfls file and has the
group id = gid.

Related routines: ndfiso:

ndfyo info

Purpose:
Returns the number of energy groups, nh, and the conservation flag, iecflg, for the requested

transportable outgoing particle.

FORTRAN Calling:
Call ndfyo info(yo, nh, iecflg)

Integer yo i N/A Requested transportable outgoing particle
Integer nh o N/A Number of groups representing the transportable

outgoing particle’s energy grouping
Integer iecflg o N/A Particle and/or Energy conservation flag

This routine returns the number of groups representing the outgoing particle’s energy grouping in
the uncollapsed production transfer matrix. If outgoing particle’s energy grouping is of size nh then in
FORTRAN the uncollapsed production transfer matrix would be equivalent to the declaration,

Real*8 matrix(nh, ng) .
However, ndf treats all matrices as one dimensional vectors. The routine also returns iecflg which is a
flag indicating the conservation mode used to process the production transfer matrix for this outgoing
particle. The meaning of iecflg is as follows,

iecflg Description
0 Conserve particles
1 Conserve energy, used for gammas (yo = 7)
2 Conserve energy for the l = 0 Legendre order
3 Conserve particles and energy

If the requested yo is not present then nh = -1 and iecflg = -1.

7.5 Summary of C routines 43

Related routines: ndfbuff: ndfpmat, ndfppmatrix, ndfppyos

7.5 Summary of C routines

ndfcaccess To select a ndfyi data file other then the default.
ndfcatw Returns the mass for the current target in AMU.
ndfcbuff Provide memory allocated by the user to the ndf routines.
ndfcclose Closes the opened ndfyi file.
ndfccorrec Returns the transport-correcting cross-section for the current target.
ndfced Returns the deposited energy for the requested transportable outgoing

particle for the current target.
ndfcemax Returns the total available energy for the current target.
ndfcep Returns the production energy for the current target.
ndfcfism Returns the fission matrix for the current target.
ndfcfisx Returns the fission < νσ >g for the current target.
ndfcflxw Returns the collapsed flux weights for l = 0.
ndfcflxw l Returns the collapsed flux weights for the requested Legendre order.
ndfcfsp Returns the normalized fission spectrum for the current target.
ndfcgid Returns the group id of the uncollapsed energy boundaries of the incident

particle.
ndfcgp Returns the uncollapsed energy boundaries of the incident particle.
ndfcgroup Provides the user supplied information needed for collapsing of the data.
ndfcidog Reads an energy group from a bdfls file.
ndfcifsp Returns a flag indicating whether or not fission data is present.
ndfcinfo Returns the path of the opened ndfyi file.
ndfcinit Opens an ndfyi file.
ndfciso Selects a target from the opened ndfyi file.
ndfcistab Returns the list of targets in the opened ndfyi file.
ndfcmxorder Returns the maximum Legendre order in the opened ndfyi file.
ndfcmxorder tc Returns the maximum Legendre order allowed by the current transport

correction method.
ndfcncorrec Returns the length of data in ’double’ words required by ndfcorrec.
ndfcngroup Returns the number of collapsed groups.
ndfcngroups Returns the number of uncollapsed groups.
ndfcnistab Returns the number of targets in the opened ndfyi file.
ndfcnmaxgps Returns the largest group size used in processing the opened ndfyi file.
ndfcnppyos Returns the number of transportable outgoing particles for which a

production transfer matrix exist for the current target.
ndfcnprod Returns the number of outgoing particles produced for the requested reaction

for the current target.
ndfcnreact Returns the number of reactions for the current target.
ndfcnrxs Returns the number of reactions of type C for the current target.
ndfcnyos Returns the number of transportable outgoing particles for the current target.
ndfcopen Opens an ndfyi file. Replaces ndfcinit and ndfbuff.
ndfcpmat Returns the collapsed production transfer matrix and the corrected, collapsed,

44 7 NDF ACCESS ROUTINES

deposited energy
ndfcppmatrix Returns the uncollapsed production transfer matrix for the requested outgoing

particle for the current target.
ndfcppyos Returns the list of transportable outgoing particles for which there are

production transfer matrices for the current target.
ndfcprod Returns the ZA and multiplicity lists for particles produced by the requested

reaction for the current target.
ndfcreact Returns a list of C-values for the reactions for the current target.
ndfcrxs Returns the requested reaction’s cross-section data for the current target.
ndfcrxslevel Returns S-, Q-, X1-, X2-, X3-, Qeff -values and the cross-section for the

requested level of the requested reaction for the current target.
ndfcrxslist Returns a list of S-, Q-, X1-, X2-, X3- and Qeff -values for the requested

reaction for the current target.
ndfcsig Returns the total cross-section (transport corrected), interaction transfer

matrix (yi → yo for yi = yo transport corrected),
energy deposited by yo = yi and the transport correcting cross-section for
the requested Legendre order for the current target.

ndfcsp Returns the group speeds for the opened ndfyi file.
ndfctotal Returns the uncorrected total cross-section for the current target.
ndfctransfer Returns the uncollapsed, uncorrected interaction transfer matrix for the

requested Legendre order for the current target.
ndfctrcorr Sets the desired transport correction method.
ndfcwsp Returns the collapsed normalized l = 0 flux.
ndfcyo Returns the jth id from the particle directory of the global data section.
ndfcyos Returns a list of transportable outgoing particles with energy deposit data for

the current target.
ndfcyo gid Returns the group id for the requested particle type.
ndfcyo iecflg Returns the conservation flag, iecflg, for the requested transportable

outgoing particle.
ndfcyo nego Returns the number of energy groups, nh, for the requested transportable

outgoing particle.

7.6 C wrappers for the FORTRAN routines

ndfcaccess

C declaration:
void ndfcaccess(int yi, char *libnam, char *Version, char *grptype, char *subpath, int ls);

yi i N/A Id of the incident particle
libnam i N/A Evaluated data library name
Version i N/A Version of evaluated data
grptype i N/A Suffix added to file name
subpath o N/A Returned string of directory
ls i N/A Length of ’subpath’ space (i.e. sizeof(*subpath))

7.6 C wrappers for the FORTRAN routines 45

This routine is a C wrapper for the FORTRAN routine ndfaccess with one additional argument.
This argument, ’ls’, informs ndfcaccess about the length of space in bytes reserved for ’subpath’. The
following C codes demonstrates it usage.

char subpath[64];
ndfcaccess(1, "endl", "current", "230", subpath, sizeof(subpath));

If there is not enough space in ’subpath’ to hold the sub-directory name and the trailing NULL byte,
then the name is truncated with a trailing NULL.

ndfcatw

C declaration:
double ndfcatw(void);

’return value’ f AMU Atomic mass in AMU for the current target

This routine is a C wrapper for the FORTRAN routine ndfatw.

ndfcbuff

C declaration:
void ndfcbuff(void *p);

p i N/A Pointer to memory allocated by the user

This routine is a C wrapper for the FORTRAN routine ndfbuff.

ndfcclose

C declaration:
void ndfcclose(void);

This routine is a C wrapper for the FORTRAN routine ndfclose. It also frees memory allocated
by other ndf C wrapper routines. For example, the memory allocated by ndfcopen. Note, ndfcclose
only frees memory allocated by the C wrapper routines. If a user calls ndfinit, allocates memory and
calls ndfbuff, then ndfcclose will not frees the memory allocated by the user, but will free other
memory that the C wrapper routines may have allocated.

ndfccorrec

C declaration:
void ndfccorrec(double *tccs);

tccs[ncg × (lMax + 1)] o barn The transport-correcting cross-section

This routine is a C wrapper for the FORTRAN routine ndfcorrec.

46 7 NDF ACCESS ROUTINES

ndfced

C declaration:
void ndfced(int yo, double *ed);

yo i N/A Id of the transportable outgoing particle
ed[ncg] o MeV-barn outgoing particle’s energy deposited

This routine is a C wrapper for the FORTRAN routine ndfed. Note that the arguments are in
reverse order as compared to ndfed.

ndfcemax

C declaration:
void ndfcemax(double *em);

em[ncg] o MeV-barn Available energy

This routine is a C wrapper for the FORTRAN routine ndfemax.

ndfcep

C declaration:
void ndfcep(double *ep);

ep[ncg] o MeV-barn Production energy

This routine is a C wrapper for the FORTRAN routine ndfep.

ndfcfism

C declaration:
int ndfcfism(double *fm);

fm[ncg × ncg] o barn Fission matrix
’return value’ f N/A Indicates whether or not data is present

This routine is a C wrapper for the FORTRAN routine ndffism. The error flag returned as the
second argument in ndffism is returned as ndfcfism’s return value.

ndfcfisx

C declaration:
int ndfcfisx(double *fnubar);

fnubar[ncg] o barn Fission nubar data
’return value’ f N/A Indicates whether or not data is present

This routine is a C wrapper for the FORTRAN routine ndffisx. The error flag returned as the
second argument in ndffisx is returned as ndfcfisx’s return value.

7.6 C wrappers for the FORTRAN routines 47

ndfcflxw

C declaration:
void ndfcflxw(double *flux);

flux[ncg] o N/A l = 0 collapsed flux weights

This routine is a C wrapper for the FORTRAN routine ndfflxw.

ndfcflxw l

C declaration:
void ndfcflxw l(int l, double *d);

l i N/A Requested Legendre order
flux[ncg] o N/A l order collapsed flux weights

This routine is a C wrapper for the FORTRAN routine ndfflxw l.

ndfcfsp

C declaration:
void ndfcfsp(double *FissSpec);

FissSpec[ncg] o N/A Normalized fission spectrum

This routine is a C wrapper for the FORTRAN routine ndffsp.

ndfcgid

C declaration:
int ndfcgid(void);

’return value’ f N/A Group id for the incident particle

This routine is a C wrapper for the FORTRAN routine ndfgid.

ndfcgp

C declaration:
void ndfcgp(double *gb);

gb[ng + 1] o MeV Uncollapsed energy boundaries for the incident particle

This routine is a C wrapper for the FORTRAN routine ndfgp.

ndfcgroup

C declaration:

48 7 NDF ACCESS ROUTINES

void ndfcgroup(int ncg, double *cgb, int fid);

ncg i N/A Number of collapsed groups
cgb[ncg + 1] i MeV Boundaries for the collapsed group
fid i N/A bdfls id of the flux to uses for collapsing

This routine is a C wrapper for the FORTRAN routine ndfgroup. Note that the first two arguments
are reversed as compared to the arguments of ndfgroup.

ndfcidog

C declaration:
int ndfcidog(int gid, double *gb);

gid i N/A Id of the energy group to input from the bdfls file
gb[’return value’ + 1] o MeV Boundaries of returned group
’return value’ f N/A Number of returned groups

This routine is a C wrapper for the FORTRAN routine ndfidog. Note that ndfidog’s third argu-
ment is returned as ndfcidog’s return value and ndfidog’s forth argument is not used by ndfcidog.

ndfcifsp

C declaration:
int ndfcifsp(void);

’return value’ f N/A Flag indicating whether or not ndffsp will print a fatal message

This routine is a C wrapper for the FORTRAN routine ndffsp.

ndfcinfo

C declaration:
void ndfcinfo(char *path, int ls);

path[ls] o N/A Full path name of the current open ndfyi file.
ls i N/A Length of path space (i.e., sizeof(*path)).

This routine is a C wrapper for the FORTRAN routine ndfinfo with one additional argument. This
argument, ’ls’, informs ndfcinfo about the length of space in bytes reserved for ’path’. The following
C codes demonstrates it usage.

char subpath[64];
ndfcinfo(path, sizeof(path));

The path is truncated with a trailing NULL if path is not long enough.

ndfcinit

7.6 C wrappers for the FORTRAN routines 49

C declaration:
int ndfcinit(int yi, char *Name, int *ReqdMem);

yi i N/A Id of the incident particle
Name[5] o N/A File name (e.g., ”ndf1”)
ReqdMem o N/A Memory in 8-byte words needed by ndf routines
’return value’ f N/A Date in the ndfyi file

This routine is a C wrapper for the FORTRAN routine ndfinit. Note that ndfinit’s third argument
is ndfcinit’s return value and ndfinit’s forth argument is ndfcinit’s third argument. This routine
and ndfcbuff can, and probably should, be replaced by ndfcopen.

ndfciso

C declaration:
int ndfciso(int ZA);

ZA i N/A ZA = (1000 × Z + A) of the target to select
’return value’ f N/A Flag indicating if target was found in file

This routine is a C wrapper for the FORTRAN routine ndfiso. The error flag returned as the
second argument in ndfiso is returned as ndfciso’s return value.

ndfcistab

C declaration:
int ndfcistab(int **ZAList);

(*ZAList)[’return value’] o N/A List of targets (ZAs)
’return value’ f N/A Number of ZAs in ZAList

This routine is a C wrapper for the FORTRAN routine ndfistab. This routine allocates the memory
for the ZA list, calls ndfistab, and then returns a pointer to the allocated memory in ’ZAList’. The
number of targets in ’ZAList’ is returned as ndfcistab’s returned value. The user must not free the
allocated memory, as this is done by ndfcclose. Multiple calls to ndfcistab are allowed.

ndfcmxorder

C declaration:
int ndfcmxorder(void);

’return value’ f N/A Maximum Legendre order

This routine is a C wrapper for the FORTRAN routine ndfmxorder. Note that ndfmxorder’s
first argument is returned as ndfcmxorder’s return value.

ndfcmxorder tc

50 7 NDF ACCESS ROUTINES

C declaration:
int ndfcmxorder tc(void);

’return value’ f N/A Maximum Legendre order allowed by transport correction method

This routine is a C wrapper for the FORTRAN routine ndfmxorder tc.

ndfcncorrec

C declaration:
int ndfcncorrec(void);

’return value’ f N/A Length of data returned by ndfccorrec

This routine is a C wrapper for the FORTRAN routine ndfncorrec.

ndfcngroup

C declaration:
int ndfcngroup(void);

’return value’ f N/A Number of collapsed groups

This routine is a C wrapper for the FORTRAN routine ndfngroup. If collapsing has been initi-
ated then the number of collapsed groups for the incident particle is returned. Else, the number of
uncollapsed groups is returned.

ndfcngroups

C declaration:
int ndfcngroups(void);

’return value’ f N/A Number of uncollapsed groups

This routine is a C wrapper for the FORTRAN routine ndfngroups.

ndfcnistab

C declaration:
int ndfcnistab(void);

’return value’ f N/A Number of targets in the opened ndfyi file

This routine is a C wrapper for the FORTRAN routine ndfnistab.

ndfcnmaxgps

C declaration:
int ndfcnmaxgps(void);

7.6 C wrappers for the FORTRAN routines 51

’return value’ f N/A Largest group size used in processing the opened ndfyi file

This routine is a C wrapper for the FORTRAN routine ndfnmaxgps.

ndfcnppyos

C declaration:
int ndfcnppyos(void);

’return value’ f N/A Number of transportable outgoing particles

This routine is a C wrapper for the FORTRAN routine ndfnppyos.

ndfcnprod

C declaration:
int ndfcnprod(int C);

C i N/A C-value for the requested reaction
’return value’ f N/A Number of outgoing particles produced for reaction C

This routine is a C wrapper for the FORTRAN routine ndfnprod. If the requested C-value is not
in the reaction list for the current target then 0 is returned.

ndfcnreact

C declaration:
int ndfcnreact(void);

’return value’ f N/A Number of reactions for the current target

This routine is a C wrapper for the FORTRAN routine ndfnreact.

ndfcnrxs

C declaration:
int ndfcnrxs(int C);

C i N/A C-value for the requested reaction
’return value’ f N/A Number of reactions of type C

This routine is a C wrapper for the FORTRAN routine ndfnrxs.

ndfcnyos

C declaration:
int ndfcnyos(void);

’return value’ f N/A Number of transportable outgoing particles with energy deposit data

52 7 NDF ACCESS ROUTINES

This routine is a C wrapper for the FORTRAN routine ndfnyos.

ndfcopen

C declaration:
int ndfcopen(int yi, char *Name);

yi i N/A Id of the incident particle
Name[5] o N/A File name (e.g., ”ndf1”)
’return value’ f N/A Date in the ndfyi file

This routine replaces the routines ndfinit and ndfbuff. Effectively, it calls ndfinit, allocates the
requested memory and then calls ndfbuff. The date returned by ndfinit is returned as ndfcopen’s
return value and the file name returned by ndfinit is returned in the ndfcopen argument ’Name’. A
call to ndfcclose will free the allocated memory. Do not use ndfclose with this routine.

ndfcpmat

C declaration:
void ndfcpmat(int yo, int n, double *g, double *pm, double *ed);

yo i N/A Requested outgoing particle (yo 6= yi)
nch i N/A Number of groups in ch
ch[nch + 1] i MeV Outgoing particle’s collapsed group boundaries
matrix[nch × ncg] o barn yi → yo production transfer matrix for yi 6= yo

energy[ncg] o MeV-barn Corrected energy deposited by outgoing particle

This routine is a C wrapper for the FORTRAN routine ndfpmat. Note that the argument order
is different than that of ndfpmat.

ndfcppmatrix

C declaration:
int ndfcppmatrix(int yo, double *pm);

yo i N/A Requested outgoing particle (yo 6= yi)
matrix[’return value’ × ng] o barn Uncollapsed yi → yo production transfer

matrix for yi 6= yo

’return value’ f N/A Number of groups representing the outgoing particle
energy grouping

This routine is a C wrapper for the FORTRAN routine ndfppmatrix. Note that ndfppmatrix’s
last argument is returned as ndfcppmatrix’s return value.

ndfcppyos

C declaration:

7.6 C wrappers for the FORTRAN routines 53

int ndfcppyos(int **yoList);

(*yoList)[’return value’] o N/A List of outgoing particle ids for the current target
’return value’ f N/A Number of outgoing particle ids returned

This routine is a C wrapper for the FORTRAN routine ndfppyos. Note that ndfcppyos’s last
argument is returned as ndfppyos’s return value, and that ndfcppyos returns a pointer to the list.
Currently, the list is static memory and is not and should not be freed. Selecting a new target and
calling this routine will overwrite the old data.

ndfcprod

C declaration:
int ndfcprod(int C, int **ZAList, int **MList);

C i N/A C-value for the requested reaction
(*ZAList)[’return value’] o N/A List of targets (i.e., ZAs)
(*MList)[’return value’] o N/A List of multiplicities
’return value’ f N/A Number of outgoing particles produced for reaction C

This routine is a C wrapper for the FORTRAN routine ndfprod. Note that ndfprod’s second
argument is returned as ndfcprod’s return value. If the requested C-value is not in the reaction list
for the current target then a fatal message is printed. ZAList and MList are the list of ZA’s and their
multiplicities. Memory for ZAList and MList are allocated by ndfcprod and freed when a new target
is selected with ndfciso or when the ndfyi file is closed with ndfcclose. If you use ndfcprod you
must use ndfciso and ndfcclose instead of ndfiso and ndfclose to insure that memory is properly
freed.

ndfcreact

C declaration:
int ndfcreact(int **C);

(*C)[’return value’] o N/A List of C-values for each reaction
’return value’ f N/A Number of reactions returned

This routine is a C wrapper for the FORTRAN routine ndfreact. Note that ndfreact’s second
argument is returned as ndfcreact’s return value. Memory for C is allocated by ndfcreact and freed
when a new target is selected with ndfciso or when the ndfyi file is closed with ndfcclose. If you
use ndfcreact you must use ndfciso and ndfcclose instead of ndfiso and ndfclose to insure that
memory is properly freed.

ndfcrxs

C declaration:
double ndfcrxs(int C, int n, double *cs);

54 7 NDF ACCESS ROUTINES

C i N/A C-value for the requested reaction
n i N/A Number of reactions with this C-value to include
cs[ncg] o barn Collapsed cross-section for this reaction
’return value’ f MeV Q-value for last reaction

This routine is a C wrapper for the FORTRAN routine ndfrxs. Note that ndfreact’s third
argument (i.e., the Q-value) is returned as ndfcreact’s return value. Also, ndfrxs’s second and last
arguments are ndfcrxs’s third and second arguments, respectively.

ndfcrxslevel

C declaration:
int ndfcrxslevel(int C, int L, double *S, double *Q, double *X1, double *X2, double *X3, double

*Qeff, double *cs);

C i N/A C-value for the requested reaction
L i N/A Level for the requested C-value
*S o N/A S-value for reaction
*Q o MeV Q-value for reaction
*X1 o Varies X1-value for reaction
*X2 o Varies X2-value for reaction
*X3 o Varies X3-value for reaction
*Qeff o MeV Qeff -value for reaction
cs[ncg] o barns Collapsed cross-section for reaction
’return value’ f N/A 1 if requested C and L are present, 0 otherwise

This routine is a C wrapper for the FORTRAN routine ndfrxslevel.

ndfcrxslist

C declaration:
int ndfcrxslist(int C, double *S, double *Q, double *X1, double *X2, double *X3, double *Qeff);

C i N/A C-value for the requested reaction
S[’return value’] o N/A List of S-values for reaction
Q[’return value’] o MeV List of Q-values for reaction
X1[’return value’] o Varies List of X1-values for reaction
X2[’return value’] o Varies List of X2-values for reaction
X3[’return value’] o Varies List of X3-values for reaction
Qeff[’return value’] o MeV List of Qeff -values for reaction
’return value’ f N/A Number of reactions of type C

This routine is a C wrapper for the FORTRAN routine ndfrxslist.

ndfcsig

C declaration:

7.6 C wrappers for the FORTRAN routines 55

void ndfcsig(int l, double *tcs, double *ed, double *tm, double *tc);

l i N/A Requested Legendre order
tcs[ncg] o barn Transport corrected total cross-section
ed[ncg] o MeV-barn Energy deposited by incident particle type
tm[ncg × ncg × (l + 1)] o barn Transport corrected interaction transfer matrix
tc[ncg] o barn Transport correcting cross-section

This routine is a C wrapper for the FORTRAN routine ndfsig. Note that ndfcsig’s first argument
is ndfsig’s last, with ndfcsig’s other arguments being one greater than ndfsig’s arguments.

ndfcsp

C declaration:
void ndfcsp(double *speeds);

speeds[ncg] o cm/sh Group speeds for the opened ndfyi file

This routine is a C wrapper for the FORTRAN routine ndfsp.

ndfctotal

C declaration:
void ndfctotal(double *tcs);

tcs[ncg] o barn Uncorrected collapsed total cross-section for the current target

This routine is a C wrapper for the FORTRAN routine ndftotal.

ndfctransfer

C declaration:
void ndfctransfer(int l, double *d);

l i N/A Requested Legendre order
d[ng × ng] o barn Uncollapsed interaction transfer matrix for Legendre order l

This routine is a C wrapper for the FORTRAN routine ndftransfer.

ndfctrcorr

C declaration:
void ndfctrcorr(CorrectionTypes c);

c i N/A Requested transport correction method

This routine is a C wrapper for the FORTRAN routine ndftrcorr. CorrectionTypes is a C enum
with valid values of e ndfnone, e ndfPendlebury, e ndfLLNL and e ndfFerguson.

56 7 NDF ACCESS ROUTINES

ndfcwsp

C declaration:
void ndfcwsp(double *w);

w[ncg] o N/A Collapsed normalized l = 0 flux

This routine is a C wrapper for the FORTRAN routine ndfwsp.

ndfcyo

C declaration:
int ndfcyo(int j);

j i N/A Index of the requested id
’return value’ f N/A The jth id from the particle directory

This routine is a C wrapper for the FORTRAN routine ndfyo.

ndfcyos

C declaration:
int ndfcyos(int **yoList);

(*yoList)[’return value’] o N/A List of transportable outgoing particles with
energy deposit data

’return value’ f N/A Number of transportable outgoing particles with
energy deposit data

This routine is a C wrapper for the FORTRAN routine ndfyos. Note that ndfyos’s last argument
is returned as ndfcyos’s return value, and that ndfcyos returns a pointer to the list. Currently, the
list is static memory, and is not and should not be freed. Selecting a new target and calling this routine
will overwrite the old data.

ndfcyo gid

C declaration:
int ndfcyo gid(int yo);

yo i N/A The id of the requested particle
’return value’ f N/A Group id used for particle yo

This routine is a C wrapper for the FORTRAN routine ndfyo gid.

ndfcyo iecflg

C declaration:
int ndfcyo iecflg(int yo);

7.7 Files and their routines. 57

yo i N/A Requested transportable outgoing particle
’return value’ f N/A Particle and/or Energy conservation flag

This routine is a C wrapper for the FORTRAN routine ndfyo info. Note, ndfcyo iecflg only
returns the iecflg value from ndfyo info, which is ndfcyo iecflg’s return value.

ndfcyo nego

C declaration:
int ndfcyo nego(int yo);

yo i N/A Requested transportable outgoing particle
’return value’ f N/A Number of groups representing transportable

outgoing particle’s energy grouping

This routine is a C wrapper for the FORTRAN routine ndfyo info. Note, ndfcyo nego only
returns the nh value from ndfyo info, which is ndfcyo nego’s return value.

7.7 Files and their routines.

This section is mainly a reference for the developers of the ndf accessing routines.

File routines
ndf cvt.F ndf cvt aasection ndf cvt cdtod ndf cvt pptab

ndf cvt isotab ndf cvt bsection ndf cvt getint
ndf ffromc.F ndffaccess ndffinfo ndffinit ndf copyi2c

ndf copyc2i
ndf filestuff.F ndf inquire ndf uf open ndf uf close ndf uf read
ndf stringstuff.F ndf strlen ndf copystring ndf catstring
ndfaccess.F ndfaccess ndfsetsubpath ndfgetsubpath

ndfsetgetsubpath ndfsetgrptype
ndfgetgrptype ndfsetgetgrptype

ndfatw.F ndfatw
ndfbuff.F ndfbuff ndfsetgetbuff ndfsetbuff ndfgetbuff
ndfcast.F ndfcast
ndfclose.F ndfclose
ndfcoll0.F ndfcoll0
ndfcoll1.F ndfcoll1
ndfcoll2.F ndfcoll2
ndfcoll3.F ndfcoll3
ndfcollapse.F ndfcollapse
ndfcopy.F ndfcopy ndficopy
ndfcorrec.F ndfcorrec ndfncorrec
ndfed.F ndfed
ndfemax.F ndfemax
ndfep.F ndfep

58 7 NDF ACCESS ROUTINES

ndffatal.F ndffatal ndfcrashifnotinit ndfcrashifnotbuff
ndfcrashifnotiso ndfcrashifnotgrp ndfreaderror

ndffism.F ndffism
ndffisx.F ndffisx
ndfflx.F ndfflx
ndfflxi.F ndfflxi
ndfflxm.F ndfflxm
ndfflxp.F ndfflxp
ndfflxw.F ndfflxw ndfflxw l
ndffreeioc.F ndffreeioc
ndffsp.F ndffsp ndfifsp
ndfgmap.F ndfgmap
ndfgp.F ndfgp
ndfgroup.F ndfgroup ndfsetgrp ndfgetgrp ndfngroup
ndfidog.F ndfidog
ndfimat.F ndfimat
ndfinfo.F ndfinfo
ndfinit.F ndfinit ndfgid ndfisfileopen ndfsetpathndf

ndfgetpathndf ndfsetgetpathndf
ndfiso.F ndfiso ndfsetgetiso ndfsetiso ndfgetiso
ndfistab.F ndfistab ndfnistab
ndfmap.F ndfmap
ndfmatrx.F ndfmatrx
ndfmxorder.F ndfmxorder ndfmxorder tc
ndfngroups.F ndfngroups
ndfowfl.F ndfowfl
ndfpath.F ndfpath
ndfpmat.F ndfpmat
ndfppmatrix.F ndfppmatrix
ndfppyos.F ndfppyos ndfnppyos ndfyo gid ndfyo ndfnmaxgps

ndfyo info
ndfprod.F ndfprod ndfnprod
ndfreact.F ndfreact ndfnreact
ndfread.F ndfread
ndfrxs.F ndfrxs ndfnrxs, ndfrxslevel, ndfrxslist
ndfsig.F ndfsig
ndfskip.F ndfskip
ndfsp.F ndfsp
ndftccalc.F ndftccalc
ndftcor.F ndftcor
ndftcs.F ndftcs
ndftotal.F ndftotal
ndftran.F ndftran

7.7 Files and their routines. 59

ndftransfer.F ndftransfer
ndftrcorr.F ndftrcorr
ndfwsp.F ndfwsp
ndfyos.F ndfyos ndfnyos

ndf c2f.c
void ndfcaccess(int yi, char *libnam, char *cVersion, char *grptype, char *subpath, int is);

double ndfcatw(void);

void ndfcbuff(void *p);

void ndfcclose(void);

void ndfccorrec(double *d);

int ndfcncorrec(void)l

void ndfced(int yo, double *d);

void ndfcemax(double *d);

void ndfcep(double *d);

int ndfcfism(double *d);

int ndfcfisx(double *d);

void ndfcflxw(double *d);

void ndfcflxw l(int l, double *d);

void ndfcfsp(double *d);

int ndfcgid(void);

void ndfcgp(double *d);

void ndfcgroup(int n, double *d, int fid);

int ndfcidog(int gid, double *d);

int ndfcifsp(void);

void ndfcinfo(char *path, int RetDateSize);

int ndfcinit(int yi, char *name, int *m);

int ndfciso(int ZA);

int ndfcistab(int **ZAList);

int ndfcnistab(void);

int ndfcmxorder(void);

int ndfcmxorder tc(void);

int ndfcngroup(void);

int ndfcngroups(void);

int ndfcnmaxgps(void);

60 7 NDF ACCESS ROUTINES

int ndfcopen(int yi, char *name);

void ndfcpmat(int yo, int n, double *g, double *pm, double *ed);

int ndfcppmatrix(int yo, double *pm);

int ndfcppyos(int **YoList);

int ndfcnppyos(void);

int ndfcprod(int C, int **ZA, int **M);

int ndfcnprod(int C);

int ndfcreact(int **C);

int ndfcnreact(void);

double ndfcrxs(int C, int n, double *d);

int ndfcrxslevel(int C, int Level, double *S, double *Q, double *X1, double *X2, double *X3,
double *Qeff, double *cs);

int ndfcrxslist(int C, double *S, double *Q, double *X1, double *X2, double *X3, double *Qeff
);

int ndfcnrxs(int C);

void ndfcsig(int l, double *tcs, double *ed, double *tm, double *tc);

void ndfcsp(double *d);

void ndfctotal(double *d);

void ndfctransfer(int l, double *d);

void ndfctrcorr(CorrectionTypes t);

void ndfcwsp(double *d);

int ndfcyo(int i);

int ndfcyo iecflg(int yo);

int ndfcyo nego(int yo);

int ndfcyos(int **YoList);

int ndfcnyos(void);

int ndfcyo gid(int yo);

ndf cfilestuff.c
int ndfuopen (char *name);

int ndfuopen(char *name);

int ndfuclose (void);

int ndfuclose(void);

int ndfuread (void *p, int *Size, int *Offset);

int ndfuread(void *p, int *Size, int *Offset);

void ndfuprintopenedfilename (void);

REFERENCES 61

void ndfuprintopenedfilename(void);

int ndf cinquire (char *File);

int ndf cinquire(char *File);

ndf cie.c
int ndf cie iscray (void);

int ndf cie iscray(void);

int ndf cie getb (unsigned char *i, int *n);

int ndf cie getb(unsigned char *i, int *n);

void ndf cie 8bto2ints (void *i8);

void ndf cie 8bto2ints(void *i8);

double ndf cie 8btodouble (unsigned char *dp);

double ndf cie 8btodouble(unsigned char *dp);

ndfmemory.c
void ndf malloc(void **ptr, int *nBytes);

void ndf malloc (void **ptr, int *nBytes);

void ndf free(void **ptr);

void ndf free (void **ptr);

References

[1] R.J. Howerton, R.E. Dye, P.C. Giles, J.R. Kimlinger, S.T. Perkins and E.F. Plechaty, Omega
Documentation, UCRL-50400 Vol 25 (1983)

[2] G.W. Hedstrom, An explanation of ndfgen, PD-211 (2001)

[3] E.E. Lewis and W.F. Miller, Jr., Computational Methods of Neutron Transport, American Nuclear
Society, Inc., La Grange Park, Illinois (1993)

