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Abstract

The RadSrc (pronounced “Rad-Source”) suite provides computational support for applications addressing
radioactive decay and emission of radiation from decay. The RadSrc library computes the concentrations of
decay products given an initial concentration and age, and photon radiation due to continuing decay of those
products. Written in C++, the library provides an object-oriented interface to computational results, as well as
its underlying database of isotope information. The library also provides a simplified interface in FORTRAN
and C++ intended for use in Monte Carlo applications, and can accommodate varying levels of integration
with other code bases. A stand-alone application, RadSrc, serves as an interactive user interface to the li-
brary. The RadSrc suite is open source and licensed under the BSD license and can be downloaded from
http://nuclear.llnl.gov/simulation.
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1 Introduction

Many applications exist that require the calculation of an ideal theoretical radiation spectrum resulting from the
natural decay of radioactive elements. Often this idealized source spectrum is modified through Monte Carlo
simulation of radiation transport to account for absorption and scattering of radiation in matter. Monte Carlo
transport codes such as MCNP/X [1], GEANT4 [2], and COG [3] allow the user to specify custom radiation
sources in the transport simulation. This nevertheless required users to manually specify the radiation source
distributions and/or supply samples from the distributions.

A previous solution, GAMGEN [4], automated the calculation of decay product concentrations in an aged
material containing radioisotopes and the distribution of photons emitted by nuclear decay. Despite the added
convenience of having the photon distributions computed, manual intervention was required to communicate this
information into the Monte Carlo codes. The RadSrc Suite has been developed to incorporate this calculation
directly into the Monte Carlo codes themselves and also provide a stand-alone application.

RadSrc accepts an initial isotope mixture and desired age and computes the concentrations of the decay prod-
ucts, and photon emission spectrum from radioactive isotopes in the aged mixture. The user has the opportunity
to select certain lines of interest and bin the remainder; this can simplify comparison of the computed spectrum
to experimental data. Several binning options are provided, including pre-computed binning schemes TART and
MORSE, uniform binning and binning proportional to a square-root of energy function. The user is similarly free
to choose any of these binning schemes for the computed bremsstrahlung radiation (if present) and the custom tally
bins for the MCNP and MCNP/X transport codes.

Written in modern C++, the RadSrc library takes advantage of modern techniques to streamline the calculation
and modularize the functions of database handling, decay product and photon calculations, and provide flexible
interfaces. The library simultaneously provides a rich interface to the library capabilities for C++ applications while
it also provides a slim interface to FORTRAN Monte Carlo applications. The object-oriented design facilitates
the adaptation of new sources of isotope data beyond that provided in the RadSrc distribution. A stand-alone
application, radsrc, is included to reproduce the functionality of GAMGEN using the RadSrc library.

The RadSrc Suite and its data have been released under the BSD open source license. Users are free to
incorporate RadSrc functionality into their own applications, or adjust and enhance the isotope database with new
isotopes, new decay modes, or improved values; as long as the RadSrc copyright statement appears in their code
and RadSrc usage is acknowledged.

2 Installation

The RadSrc Suite is distributed as a single archive containing the source code, isotope data, examples, and docu-
mentation. Precompiled binaries of the stand-alone application for MacOS and Windows are also provided. You
can download everything from http://nuclear.llnl.gov/simulation.

The complete distribution in a self-contained directory structure:

bin, lib — Destination directory for executables and the library.

src — Source code and makefile.

doc — Documentation and destination for doxygen files.

data — Isotope database files.

To install, simply go to the top level directory and type make. This will compile both the library and the stand-
alone application with the GNU compiler. To compile just the library, without making the application, type
make libradsrc.

The provided makefile also includes flags for the Intel and Portland Group compilers. To compile using either
of these compilers, include the target intel or portland on the command line.
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If you have doxygen installed on your system, type make docs to generate the html documentation. A file
that redirects to the main page is provided in the doc directory for your convenience.

To accommodate applications that cannot specify the location of the isotope data base, the RadSrc Suite checks
environment variables for the correct path. Because the RadSrc library can load multiple databases, each database
parser looks for an environment variable specific to the parser. All parsers fall back to the RADSRC DATA en-
vironment variable if the parser-specific variable is not set. The GAMGEN legacy database parser first checks
RADSRC LEGACYDATA, then RADSRC DATA to locate the database. If neither variable is set or no database is
found at that location, the library attempts to load from subdirectory data in the current working directory.

You may configure the library to use extended-precision arithmetic when calculating isotope concentrations.
To accomplish this compile with USE HIGH PRECISION defined, or edit porting.h. You may also use an
external library by editing porting.h. Then, HighPrecisionType must be a typedef to a class that
supports basic arithmetic operators and the exponential function. Note that the RadSrc application currently only
links with the double precision library.
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3 RadSrc Application

3.1 Introduction

The calculation of radioactive decay products, although straightforward, is well suited for automation. The Rad-
Src library combines radioisotope data, x-ray and gamma-ray line catalogs, and measured bremsstrahlung spectra
to automatically compute the photon emission from an aged radiological sample. The binary program radsrc
is the interactive (or batch) user-interface for computing photon intensity distributions. It is designed to dupli-
cate the output and essential functionality of the GAMGEN application, using the RadSrc library to perform the
calculations.

Application features:

• Calculation of decay product concentrations given an initial isotope mixture and the age

• List of gamma and x-ray photons produced by radioactive decay, as well as the particular decay(s) generating
each photon line and the initial isotope responsible for the presence of the line

• Sorted output of photons by energy and intensity per gram

• Bremsstrahlung background for the 238U decay family

• Computes bin structure for separate tally of scattered and unscattered photons during transport simulation

• Flexible selection of binning methods for photon lines, bremsstrahlung photons, and scattered photon tally

• Outputs photon lines, bremsstrahlung photons, and tally bin structures in MCNP-compatible format

• Written in portable C++ language

3.2 Usage

The application can be used in either interactive or non-interactive mode. In interactive mode the program accepts
problem definition from standard input. For non-interactive mode, the program reads the problem definition from
a file.

The application resides in the high level bin directory so it is invoked with the command bin/radsrc. The
command line syntax is:
bin/radsrc [-hq] [config-file]

The -h flag provides command-line syntax help.
The -q flag suppresses the writing of run summaries to stdout.
If config-file is not given, the application runs in interactive mode.

3.3 Application Database

By default, the RadSrc application uses data found in the subdirectory data. The user can redirect to another
database by setting the RADSRC DATA environment variable or the RADSRC LEGACYDATA environment variable,
if the data is in the GAMGEN legacy format. Only data from one directory will be used and the the priority for
the location used is first RADSRC LEGACYDATA if set to a valid directory, then RADSRC DATA if set to a valid
directory, then the data directory (default).

3.4 Problem Definition

The RadSrc problem definition (the input parameters) consists of two parts, a primary and a secondary specifica-
tion. The primary specification consists of the initial isotope mixture, two optional specifications and the desired
age of the computed mixture. The secondary specification has to do with the production of Monte Carlo input
decks, whether to produce them, and if so, what binning and other options to use.
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3.4.1 Primary Specifications

The general format of a primary specification is:
keyword value-1 [value-2]

where the keyword and value are separated by at least one blank or end of line character.
These primary specifications must be entered in the specific order:

isotope specifications
optional specifications
age specification

Isotopes are specified with a keyword of their common abbreviation (case insensitive) and atomic weight e.g.
U-238 or u238, but not U 238. Meta-stable isotopes have an m suffix, e.g. Pa-234m. The isotope identifier
is followed by the isotope concentration as a percentage. For your convenience, all of the isotopes and their
concentrations may be specified as a single line, separated by whitespace (spaces, tabs, and newlines).

Two optional specifications may be included in the primary specifications (actually, they may appear anywhere
before the age specification):

brem off
range low-value high-value

brem off specifies that bremsstrahlung should not be sampled by CApi::getPhoton nor included in any gen-
erated Monte Carlo input decks. The default is brem on. If you are doing actinides with normal density, then
you should leave the brem on. For the most accurate result possible, you can turn off the brem and put into your
MCNP input a beta decay spectrum (with the correct flux) and let MCNP transport the electron.

The range keyword restricts calculation of emitted gamma lines to the specified energy range. This subse-
quently restricts sampling by CApi::getPhoton, line lists, and Monte Carlo input decks.

After you have entered all of the initial isotopes and their concentrations, enter the age specification, the
keyword age followed by the desired age in years. Any time before the age keyword is entered, RadSrc can be
terminated by entering the keyword quit.

An example of primary specifications follows.
U238 90.8
U235 9.2
brem off
age 13.6

The same primary specifications could be specified on a single line as follows.
U238 90.8 U235 9.2 brem off age 13.6

If you mistype an entry or specify an invalid isotope, RadSrc accepts it and allows further entries. After
you enter the age specification, RadSrc validates all the input and if any errors are found a message such as the
following is written:

Error parsing your problem input and/or computing decay chain.
Total configuration input was:
u38 100 age 13

The final line of the error message contains the data that was input, presented in the single line format.
RadSrc checks that the total concentration is approximately 100%, actually, in the interval [99.9%, 100.0%]. If

the sum of the concentrations is less than 99.9% RadSrc writes a warning message to standard output and continues
to run. if the total concentration is greater than 100.0% RadSrc writes an error message and terminates.

3.4.2 Secondary Specifications

The first secondary specification indicates whether you want to produce Monte Carlo input decks. A single char-
acter, y indicates yes, n indicates no.

If you specify n, no other secondary specifications are needed.
If you specify y to request the Monte Carlo input decks, RadSrc turns on bremsstrahlung which appears in

the output.mci file as the binned contribution (histogram). The bremsstrahlung contribution comes only from
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the beta decay of Protactinium (Pa234m) using 238U metal as the medium. Bremsstrahlung never appears in the
output.lin file because it is a continuous distribution and not a discrete line. However, the total bremsstrahlung
intensity rate is listed as part of the heading of both the output.lin and output.mci file.

Whenever Monte Carlo input decks are to be produced, some of the following specifications are required.
Binning options for Bremsstrahlung
Binning options for gamma lines
Binning structure for binned gamma photons

Binning Options for Bremsstrahlung If brem off is included in the primary specifications Bremsstrahlung
binning options are not necessary and RadSrc does not request them.

However, if brem off is not included, the user must specify the binning structure for bremsstrahlung radia-
tion. RadSrc provides a measured bremsstrahlung spectrum due to beta decay of 234mPa, scaled to the concentra-
tion of 234mPa present and rebinned as specified by the user. In general, binned data have the following options:

1) Default Binning
2) Read from a file
3) Equal spaced bins
4) Proportional to Energy Width
5) TART 65 bins (NaI)
6) MORSE 35 bins (NaI)
7) GADRAS 1000 bins (HPGe)

Option 1 Default binning, is a bin structure specified by the provided file named lib/dfltbrem.dat
which may be customized for local installations.

Option 2 Read from a file, reads bin boundaries from a user-provided file. A default filename is suggested,
depending on the quantity being binned.

Option 3 Equal spaced bins, creates a specified number of bins with specified minimum and maximum
energy boundaries.

Option 4 Proportional to Energy Width, does the same as equal space bins but varies the bin width in pro-
portion to the function k1 + k2E

1/2, with k1 and k2 specified by the user and E is the lower energy boundary of
the bin.

Options 5 to 7 These options are predefined bin structures.

After selecting a binning option, the user may be prompted for additional information if it is required by that
option. For example, Option 3, Equal spaced bins, requires the entry of the number of bins and the minimum and
maximum energies.

Binning options for gamma lines The gamma line binning options menu is as follows.
1) Keep all lines discrete
2) Bin all lines
3) Keep the default lines
4) Read the line list from a file

Option 1 Keep all lines discrete, uses a default energy range. RadSrc prints the minimum and maximum
values of the default energy range and asks if it is acceptable. The following lines show an example in the interactive
mode.

Do you want to use the default energy range (90 , 3300)
for the gamma line sources and unscattered tally? y/n (y):

If the user choses n, he must then specify a minimum and maximum value, in keV.

7



Options 2 Bin all lines. A standard binning option list is presented with the same choices as described above
for the Bremsstrahlung binning option.

Option 3 Keep the default lines, which are defined in the provided file lib/dfltlins.dat. A standard
binning option list is presented with the same choices as described above for the Bremsstrahlung binning option.

Option 4 Read the line list from a file, reads line energies from a user-specified file. Note that the lists of line
energies must exactly match the line energies listed in the database, and changes in the database should be reflected
in the line energy lists. However, a mechanism is provided to specify approximate energy ranges. By default, line
energies must be specified to 0.1 keV.

If you elect to bin some or all of the lines, RadSrc restricts its output of unbinned lines to those that fall within
the same energy range as the binned lines. The unscattered photon tally is also restricted to this energy range. If
you do not bin any lines, you must specify a minimum and maximum energy. If you specified the optional range
keyword in the primary specification, that range is used.

Binning structure for binned gamma photons The secondary specifications are completed by selecting a bin-
ning structure for binned gamma photons (but only if you elected to bin photons) and for the scattered photon tally.
These selections are the same as the bremsstrahlung binning options described above.

3.5 Examples of Execution

3.5.1 Interactive Example that Produces Monte Carlo Decks

The following shows an example of an interactive execution that produces Monte Carlo decks. The input matches
that of the test program test/test.du.

The computer generated text is shown in regular type font, user entered text is in bold font.

> cd radsrc
> bin/radsrc
Enter sources on one or multiple lines.
(the total must be between 99.9% and 100%).
Terminate the input by specifying the desired age in years.

Example1: U238 95.0 U235 5.0 Age 10

Example2: Pa-234m 5e-14
Pa-234 2e-14
U-238 1.0
Age 5.5

Enter <isotope> <percent> or AGE <years> --> U234 .00071
Enter <isotope> <percent> or AGE <years> --> U235 .182
Enter <isotope> <percent> or AGE <years> --> U236 .00284
Enter <isotope> <percent> or AGE <years> --> U238 99.814
Enter <isotope> <percent> or AGE <years> --> AGE 15.

Input composition: (fractional units)
U-234 7.1e-06
U-235 0.00182
U-236 2.84e-05
U-238 0.99814
Total: 0.999995
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Age: 4.7304e+08 s, 15 yrs
Do you want to produce Monte Carlo input decks? y/n (y): y

Select binning options for Bremsstrahlung:

1) Default Binning
2) Read from a file
3) Equal spaced bins
4) Proportional to Energy Width
5) TART 65 bins (NaI)
6) MORSE 35 bins (NaI)
7) GADRAS 1000 bins (HPGe)

Select (1-7): 1

Select binning options for gamma lines:

1) Keep all lines discrete
2) Bin all lines
3) Keep the default lines
4) Read the line list from a file

Select (1-4): 1

Do you want to use the default energy range (90 , 3300)
for the gamma line sources and unscattered tally? y/n (y): n
Enter minimum value (keV): 100
Enter maximum value (keV): 2000.
Range is now: (100, 2000)

Select binning options for scattered tally:

1) Default Binning
2) Read from a file
3) Equal spaced bins
4) Proportional to Energy Width
5) TART 65 bins (NaI)
6) MORSE 35 bins (NaI)
7) GADRAS 1000 bins (HPGe)

Select (1-7): 1
1467 lines computed.
Total Gamma Line Intensity: 4185.8 ph/s/gm
Total Bremsstrahlung Intensity: 2552.08 ph/s/gm
1136 unbinned lines between 100.31 keV and 1998 keV
Intensity of Unbinned lines is 435.092
Intensity of Binned lines is 0
Intensity of Bremsstrahlung 2552.08
Total Intensity of all sources is 2987.17

Gamma-ray spectrum and mixture composition written to files:
output.lin = Human readable list of lines
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output.mci = MCNP/MCNPX input format
output.cog = COG input format
output.def = Recording of user input

Output To see the contents of the four output files produced by this example look at the files:
test/test.du/reference/output.lin
test/test.du/reference/output.mci
test/test.du/reference/output.cog
test/test.du/reference/output.def

3.5.2 Non-interactive Example

The following shows an example of an non-interactive execution that is identical to the first example, the interactive
example. The computer generated text is shown in regular type font, user entered text is in bold font.

> cd radsrc
> bin/radsrc test/test.du/reference/output.def

Input composition: (fractional units)
U-234 7.1e-06
U-235 0.00182
U-236 2.84e-05
U-238 0.99814
Total: 0.999995
Age: 4.7304e+08 s, 15 yrs

Contents of the input file The input file, test/test.du/reference/output.def, contains the follow-
ing.

U234 .00071
U235 .182
U236 .00284
U238 99.814
AGE 15.
y #....generate MC files
1 #....default brem binning
1 #....keep all gamma lines discrete
n #....don’t use the default energy range
100. #....minimum energy value
2000. #....maximum energy value
1 #....default tally binning

Output The contents of the four output files produced by this example are the same as for the previous (interac-
tive) example.

3.6 Output Files

RadSrc always produces two output files:
output.def contains the user input. It can be used later as an input config file.
output.lin contains lists of all photon lines emitted by radioisotopes in the aged sample and their originat-

ing decays.
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If the user elects to produce Monte Carlo input decks, two additional files are created:
output.mci contains the photon distributions and bin structures for inclusion in an MCNP input file. The file

contains the source for each line and also a binned histogram that represents the bremsstrahlung from Protactinium
in 238U metal. The total intensity is written as a comment and is the sum of both.

output.cog contains COG input data.
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4 RadSrc Library

4.1 Introduction

The RadSrc library is written in C++ employing an object-oriented design. The library consists of four components:

• isotope database management,

• decay product calculations,

• photon intensity calculations,

• and interfacing routines.

Users who are solely interested in obtaining photon distributions for Monte Carlo simulations will be satisfied
by the simplified FORTRAN and C++ interfaces presented. Other users of the library may directly interface with
the library objects to access the isotope database or the full capabilities of decay product and photon calculation
routines. Details of the library API are presented in the appendix.

The required information about isotopes is provided by the CIsotopeDatabase class. This class contains phys-
ical information about isotopes such as mass and half-life; a listing of all decay modes, their branch fractions, and
daughter isotope; and a listing of all gamma rays and x rays produced by each decay. The class provides iterators
to list all decays and photons in an isotope record. Isotope databases are in turn managed by the CDatabaseM-
anager. The CDatabaseManager makes it possible to obtain isotope information from different data suppliers as
well as accommodate different storage mechanisms.

Decay product calculations are handled by the CDecayComputer class. The object is configured with an
initial atomic fractions of isotopes and the desired age. Also, an isotope database is selected. After performing
the decay product calculation, the object provides a listing of a decay products, their concentrations, the decays
producing the products, and the ultimate parent isotope(s) present in the initial mixture that yielded each decay
product. Users may create multiple CDecayComputer objects to address multiple sources in the same calculation.

Photon intensity calculations are handled by the CPhotonComputer class. This object is associated with a
CDecayComputer object when it is created. This object takes the aged isotope concentrations and computes the
discrete x ray and gamma ray emissions listed in the isotope database for each decay mode of each isotope present.
It also computes a binned bremsstrahlung distribution when applicable if the necessary data is present in the isotope
database. A CPhotonComputer object provides a list of all the photon lines, sorted by either energy or intensity,
as well as the decays that produced the photons and the ultimate parent isotope(s) in the initial mixture. This object
also permits sampling from the photon distribution using a user- supplied random number generator.

Users will obtain the greatest utility of the library by directly employing the aforementioned objects. However,
we anticipate that many users will simply want to obtain the aged mixture concentrations and sample photons from
decay sources in the mixtures. To that end, we provide a simplified interface to both FORTRAN/C and C++. The
simplified interface encapsulates the CPhotonComputer and CDecayComputer classes, handles initialization,
and interfaces with the user’s code subject to most of the limitations of FORTRAN 77. The ability to address
independent mixture calculations is retained in the FORTRAN environment by providing an opaque handle to the
user upon initialization. This handle is passed back to the library in every function call.

Initialization of the library requires special attention. Users attempting to integrate the RadSrc library an
application with controlled access to the source code may be limited in ways they can communicate information
to the library. Therefore we have provided four mechanisms for initializing the library:

• Hard-coded initialization in the user’s own code using RSADDISOTOPE() and RSMIX().

• Passing character data that has been incorporated into the application’s I/O and initialization routines on to
the library one line at a time using RSADDCONFIG() and RSSOURCECONFIG().

• Hard-coding the filename of a configuration file into the user’s own code using RSLOADCONFIG().
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• Relying on environment variables to locate both the isotope data and the problem configuration.

With these four mechanisms available, libradsrc can accommodate any level of integration with the user’s applica-
tion.

4.2 Optional Documentation

The RadSrc Library source are annotated C++ files designed to be used by the Doxygen documentation generator
software. If Doxygen is available on your system, an html document, which describes the files, classes, methods
and variables, can be generated with the following commands

cd radsrc
make docs

The documentation is then available in the file doc/RadSource.html.

4.3 Configuring GEANT4 to use RadSrc

The user needs to have access to a GEANT4 installation. For the following instructions it is assumed that the user
can already run GEANT4 and that RadSrc has already been downloaded to your computer.

Before you build the RadSrc library, it is highly recommended that you determine what compiler the GEANT4
installation is using and modify the RadSrc Makefile (src/Makefile) to use the same compiler.

To create the RadSrc library (lib/libradsrc.a) type
cd src
make

Then to create the necessary RadSrc environment variables, type
source ../setup

The geant directory in the RadSrc release contains a sample program which accesses the radsrc library
and runs a 10kg uranium ball problem. The GEANT4 GNU makefile, geant/GNUmakefile, that builds this
example has two lines that provide the link to the RadSrc libraries.

EXTRALIBS += -L$(RADSRC HOME)/lib/ -lradsrc
CPPFLAGS += -I$(RADSRC HOME)/src/libradsrc/

The environment variable RADSRC_HOME is defined in the setup routine along with the variable
RADSRC_LEGACYDATA which points to the RadSrc data files.

To create the example executable, type
cd ../geant
make

which produces the executable file bin/$G4SYSTEM/exampleN01
To run the program type

bin/$G4SYSTEM/exampleN01 example.in

4.4 Calling RadSrc from within GEANT4

The RadSrc routines are called from within the ExN01PrimaryGeneratorAction class which handles event
generation for the problem. In the header files we include the RadSrc header files:

#include "radsource.h"
#include "cpp_api.h"

and create some pointer variables that point to instances of the RadSrc class,

radsrc::CRadSource* pRadSource;
radsrc::CRadSource* t1RadSource;
radsrc::CRadSource* t2RadSource;
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the RadSrc routines live in the namespace radsrc:: in order to prevent conflicts with geant4 classes.
To create a new instance of RadSrc one calls,

t1RadSource = radsrc::CApi::newSource();

The instance of RadSrc must then be initialized with a problem definition. A number of ways to do that are
provided. One way is to create a text file with the problem definition and pass the location of that file to the
LoadConfig member function.

t1Good = radsrc::CApi::loadConfig(t1RadSource, (const std::string) FileName);

If a NULL string is passed the program will look for the environment variable RADSRC_CONFIG to find the input
text file.

The text file must be in the form
U235 90.0
U238 10.0
AGE 20.0

where the fraction of each isotope is specified and should add up to 100%. The last line in the file should be an
AGE card with the age given in years.

Additionally, the problem specification can be passed as input lines to the code,

radsrc::CApi::addConfig(t2RadSource, ‘‘U235 90.0’’);
radsrc::CApi::addConfig(t2RadSource, ‘‘U238 10.0’’);
radsrc::CApi::addConfig(t2RadSource, ‘‘AGE 20.0’’);
t2Good = radsrc::CApi::sourceConfig(t2RadSource);

where the addConfig member function accepts text lines of input and the sourceConfig processes the input
and performs the RadSrc calculations and setup.

Once the problem is specified the gamma-ray distributions can be sampled with a call to:

G4double energy = radsrc::CApi::getPhoton(pRadSource, localran ) * keV;

The function returns an energy in keV. The function localran is a wrapper for the standard GEANT4 random
number generator G4UniformRandom.

The RadSrc problem can also be specified from the GEANT4 command line through the commands defined in
the ExN01PrimaryGeneratorMessenger class. They duplicate from the command line what is available in
the code.

/radsrc/file ’./problem.in’

reads the problem definition from the specified file

/radsrc/file ’’

will look for the environment variable RADSRC_CONFIG to find the input text file. The complete problem speci-
fication can also be passed on the command line by using

/radsrc/input U235 90.0
/radsrc/input U238 10.0
/radsrc/input AGE 20.0
/radsrc/update

The GEANT4 code is set up so that the ExN01PrimaryGeneratorAction class will try to find a RadSrc
input text file at instanciation. A constructor function is provided which passes a string which specifies the file
location. See exampleN01.cc for an example. That definition can be overridden from the command line. If no
problem definition is specified the program will terminate at the first event.

14



4.5 Calling RadSrc from FORTRAN

MCNP/MCNPX and COG provide dummy source subroutines called source.F90 (MCNP/MCNPX) and IsoP.F
(COG), which can be used to call the RadSrc routines. While RadSrc is native C++, a number of Fortran callable
subroutines are provided to allow Fortran code to use the package. All routines names begin with RS in order to
prevent accidental conflicts with the Monte Carlo code. Multiple instances of the RadSrc library can be created to
model multiple sources. Simply provide a different handle for each case. Inside the subroutine define the variables
and functions that the library will use.

INTEGER*8 HANDLE
LOGICAL SUCCESS, RSLOADCONFIG, FIRST, RSSOURCECONFIG
REAL*8 RSGTRPHOTON

EXTERNAL RSLOADCONFIG, RSGTRPHOTON, RSADDCONFIG, RSSOURCECONFIG

COMMON /rscommon/ HANDLE, FIRST
DATA first /.true./

During the first pass through the subroutine an instance of the RadSrc library is created and the problem specified.

IF(FIRST)THEN
FIRST=.FALSE.
CALL RSNEWSOURCE(HANDLE)
SUCCESS = RSLOADCONFIG(HANDLE,’./problem.in’)
IF (SUCCESS .NEQV. .TRUE.) THEN

PRINT *, ’Error setting up problem’
STOP

ENDIF
endif

The subroutine RSNEWSOURCE(HANDLE) creates an instance of the RadSrc library and returns a pointer to it.
The specification of the problem is held in a text file of the form:

U2325 90.0
U238 10.0
AGE 20.0

where the fraction of each isotope is specified and should add up to 100%. The last line in the file should be an
AGE card with the age given in years. The subroutine RSLOADCONFIG(HANDLE,’./problem.in’) reads
in the specified problem definition file and performs the problem calculations and setup. It returns .FALSE. if
there is a problem. If RSLOADCONFIG(HANDLE,’’) is specified with a null string then the code will check the
environment variable

setenv RADSRC_CONFIG [path to text file with problem specification]

for the location of the input file.
Alternatively, the problem specification can be passed as strings using the RSADDCONFIG and

RSSOURCECONFIG subroutines as shown:

CALL RSADDCONFIG(HANDLE,’U234 0.00071’)
CALL RSADDCONFIG(HANDLE,’U235 0.182’)
CALL RSADDCONFIG(HANDLE,’U236 0.00284’)
CALL RSADDCONFIG(HANDLE,’U238 99.814’)
CALL RSADDCONFIG(HANDLE,’AGE 15’)
SUCCESS = RSSOURCECONFIG(HANDLE)
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Finally, after the problem has been set up, the user can call the subroutine RSGTRPHOTON(HANDLE,RNG)
to sample the photon distribution and return an energy value. The native random number generator is passed to the
subroutine so that the Monte Carlo code can maintain control over the random number sequence. The subroutine
returns an energy value in keV.

4.6 Configuring MCNP/MCNPX to use RadSrc

MCNP (and MCNPX∗) provide dummy source subroutines called source.F90 which can be used to call the
RadSrc routines. The user will need to have access to and be able to recompile the MCNP source code. Download
the RadSrc library to your computer. In the src directory type gmake in order to create the libradsrc.a file.
It is highly recommended that you determine what compiler the MCNP installation is using and modify the RadSrc
Makefile to use the same compiler.

The MCNP Makefiles must be modified to link in the RadSrc libraries. In the Source directory there is a
master makefile and in the config directory there are platform specific makefiles. In the appropriate makefile for
your installation add a line:

EXTRALIBS = -lstdc++ -L$(RADSRC_HOME)/lib/ -lradsrc

As the RadSrc library is written in C++ one must also link in the stdc++ library. To allow the program to see the
class definitions add a path to the C++ headers by modifying

INCLUDE_DIRS = -I$(RADSRC_HOME)/src/libradsrc/

Ensure that the environment variable RADSRC_HOME points to your copy of the RadSrc installation. At this point
you can try to relink the MCNP executable to ensure that the libraries are being properly linked. In order for the
RadSrc library to be able to find its data files an environment variable must be set:

setenv RADSRC_LEGACYDATA $(RADSRC_HOME)/data/

4.7 Configuring COG to use RadSrc

COG provides a dummy source subroutines called and IsoP.F, which can be used to call the RadSrc routines.
The user will need to have access a COG installation. Download the RadSrc library to your computer. In the
src directory type gmake in order to create the libradsrc.a file. It is highly recommended that you determine what
compiler the COG installation is using and modify the RadSrc Makefile to use the same compiler.

COG provides the capability to compile a user source routine and dynamically link it into the COG executable.
Make a directory containing the makefile COGUserlib.make and the user source subroutine IsoP.F which
can be found in the usrdet directory of your COG release. The makefile must be modified to link in the RadSrc
library. Modify the LDOPTS variable to add:

LDOPTS = ... -L$(RADSRC_HOME)/lib/ ... -lradsrc -lstdc++

This is correct for the intel compiler. Other compilers may require different libraries. The environment variable
RADSRC_HOME should be set to point to your installation of RadSrc. As the RadSrc library is written in C++ one
must also link in the stdc++ library.

At this point you can try to link the COG user library to ensure that the libraries are being properly linked. In
order for the RadSrc library to be able to find its data files an environment variable must be set:

setenv RADSRC_LEGACYDATA $(RADSRC_HOME)/data/

∗Hereafter we just use “MCNP” to refer to both.
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Options Unique to COG

The IsoP.F subroutine can also be configured to accept input from the COG input file. Using the code fragment:

IF(FIRST)THEN
FIRST=.FALSE.
CALL RSNEWSOURCE(HANDLE)
DO 99 I=1,NARGS

CALL RSADDCONFIG(HANDLE,ARGA(I))
99 ENDDO

SUCCESS = RSSOURCECONFIG(HANDLE)
IF (SUCCESS .NEQV. .TRUE.) THEN

PRINT *, ’Error setting up problem’
STOP

ENDIF
endif

the COG user source input will be passed to the RadSrc library. Setup up the source specification in the COG input
file with the following format:

source
usrsor IsoP

U235 90.0
U238 10.0
AGE 15.0

Due to the limitations of the COG input parser none of the individual words in the input can be longer than 8
characters.

17



5 Method for Computation of Decay Products

Radioisotopes can decay into other isotopes with lower average binding energy per nucleon [5]. Isotopes will
typically decay by one of several processes: alpha decay, which emits an α particle (helium nucleus) and reduces
both the atomic number and atomic mass by two; beta-minus decay, with emission of a β− particle (electron),
which increases the atomic number; or beta decay with (beta-plus) or without (electron capture) emission of a β+

particle (positron), either of which decreases the atomic number.
Radioactive decay is frequently accompanied by emission of photons. The parent isotope may decay to an

excited state, which enter the ground state by emitting one or more gamma rays. The atomic electrons may also
emit x rays as they re-adjust to the new nuclear potential. If a charged particle is emitted in the decay, it may also
emit photon radiation, called bremsstrahlung radiation [5], as it travels through condensed matter. A radioisotope
may decay by both alpha and beta modes. Also, a particular decay mode may decay to both the ground state and
one or more excited states of the daughter nucleus, with different gamma and bremsstrahlung emission. These are
termed decay branches. The probability of any particular decay branch occurring is the branch fraction. There are
further variations of these decays. For example, a decay to an excited state may result in emission of a neutron.
The rates of decay for all the decay branches sum to the overall decay rate. The half-life, ln 2 divided by the overall
decay rate, is the time when half of the atoms of a radioisotope have decayed.

A radioisotope may decay into one or more isotopes that are themselves radioactive. As these daughter isotopes
decay into other radioisotopes, a chain of decays is followed. This chain will branch at isotopes with multiple
significant decay, and often rejoin when two paths contain the same alpha and beta decays but in a different order.
The decay chain of 238U is shown in Figure 1 as a typical example.

23 8 U 234 T h  23 4m P a  23 4 U 230 T h  226 R a  22 2 R n  

21 4 B i  

21 8 Po 

21 8 At 

21 0 P b  

210 T l  

210 Bi  21 0 P o  

20 6 P b  

21 4 R n  21 4 P o  

206 Hg 20 6 T l  21 4 P b  

23 4 P a  

Figure 1: Decay paths for 238U and its daughter isotopes, including at most a single alpha and a single beta decay.
There are 30 possible paths from 238U to 206Pb.

As time progresses, the numbers of atoms of the daughter isotopes rise and fall. Since the half-lives of isotopes
in the decay chain range over many orders of magnitude, certain isotopes will come to dominate the decay of other
isotopes, and the concentrations of these isotopes will be fixed to a nearly constant ratio. This is termed secular
equilibrium. One may infer the presence and concentration of an isotope that does not emit photons by detecting
and measuring the intensity of photons emitted by another isotope that is in secular equilibrium with the hidden
isotope. To do this, we must calculate the isotope ratio at the time of measurement.

Bateman derived the closed-form solution to the differential equations governing radioactive decay through the
use of Laplace transforms in 1910 [6, 7]. The form of the solution lends itself to calculation by recursion. Without
loss of generality, we can reduce the problem of multiple initial parent isotopes to independent problems with a
single parent isotope and sum the individual solutions. Each parent isotope is the root of a directed acyclic graph
with decay products as nodes. Further, we can consider each path in the directed graph independently of the other
paths and sum the solutions for each linear decay chain. These decompositions are made possible by the linearity
of the original system of differential equations.
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Consider the following system of equations describing a particular decay path:

N ′0(t) = −λ0N0(t) (1)

N ′i(t) = fi−1λi−1Ni−1(t)− λiNi(t) (2)

Ni(0) =

{
1 i = 0
0 i > 0

(3)

In these expressions, Ni(t) is the time dependent concentration of isotope i, λi is the decay constant for that
isotope, and fi is the branch probability for the particular decay of isotope i given in this chain. It is readily verified
by substitution that this system has solutions of the form:∗

Ni(t) =
i∑

j=0

Ai,je
−λjt (4)

with

A0,0 = 1

Ai,j =
fi−1λi−1

λi − λj
Ai−1,j ; 0 ≤ j < i

Ai,i = −
i−1∑
j=0

Ai,j

(5)

This recursive formulation is particularly amenable to calculation with dynamic programming techniques. The
decay graph is traversed using the lists of decay modes provided by the isotope database. Each branch is followed in
turn by recursively calling the calculation routine with the branch fraction and daughter isotopes applicable to that
branch, and the constants Ai,j for the branching isotope. Upon reaching a stable isotope, the recursive functions
return to each branch point, then following the next branch until no branches remain. This avoids re-computing
the constants for all the isotopes preceding a branching decay.

The pairs of constants Ai,j and decay constants λj are stored in a mapping as they are computed. Terms
associated with the same λj are summed as all possible decay paths to a particular daughter isotope are encountered.
At the conclusion of the calculation, the mapping holds all contributing exponential terms to the time dependent
concentration of each isotope.

∗This form implicitly assumes that all decay constants are distinct. Although this is true in general for nuclear decay sequences, libradsrc
will exit if presented with a contrived example containing identical decay constants.
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A Library API

This appendix describes the libradsrc API.∗ Libradsrc provides a simplified API for applications solely interested
in computing and sampling photon distributions. A full-featured C++ API is also provided for complete access to
the isotope database and decay product and photon calculations.

Note that all C++ functions are contained within the radsrc namespace.

A.1 Error Handling

The library declares the CRadSourceException class for error handling. There are no subtypes of this class at this
time. This class is thrown in the following situations:

• An unrecognized database type is requested, or a database parser is requested to parse a foreign database
type. (Currently, only the GAMGEN legacy database is supported).

• The input mixture units are not ATOMIC FRACTION.

• No database is loaded at the time calculations are performed.

• If you call an accessor method in an uninitialized CGammaEntry object or dereference an invalid CPho-
tonIterator.

A.2 Caveats

ASCII to floating-point conversion routines differ from machine to machine. As a result, photon energies are
known to be slightly different on different architectures, despite being constant values that are never computed.

Finite precision can cause the concentration of some daughter products to be negative at very short times
relative to their half-lives.

A.3 FORTRAN/C/C++ Monte Carlo Interface

In these examples,

LOGICAL SUCCESS
INTEGER*8 HANDLE
CHARACTER*n FILENAME, CONFIGSTRING
INTEGER LENGTH, Z, A, M, N, NMAX
DOUBLE PRECISION CONCENTRATION, E, AGE, LINES[2][NMAX], FOURV[4], DRNG
REAL*4 FRNG
INTRINSIC/EXTRINSIC FRNG, DRNG

Initialization will generally follow one of the following forms:
FORTRAN:

• Programmatically set the initial composition and final age.

CALL RSNEWSOURCE(HANDLE)
CALL ADDISOTOPE(HANDLE,92,238,0,100D0)
SUCCESS = MIX(HANDLE,25D0)

• Load the configuration from a file.
∗This section is a good basic description, but for an authoritative reference, please generate and refer to the doxygen files. See Section

4.2
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CALL RSNEWSOURCE(HANDLE)
SUCCESS = RSLOADCONFIG(HANDLE,’config.txt’)

• Concatenate a series of character strings into a single string containing the configuration.

CALL RSNEWSOURCE(HANDLE)
DO

CALL RSADDCONFIG(HANDLE,CONFIGSTRING)
END DO
SUCCESS = RSSOURCECONFIG(HANDLE)

C++:

• Programmatically set the initial composition and final age.

CRadSource* handle = newSource();
addIsotope(HANDLE,92,238,0,100.0)
bool success = mix(HANDLE,25.0)

• Load the configuration from a file.

Handle handle = newSource();
bool success = loadConfig(handle,"config.txt")

• Concatenate a series of character strings into a single string containing the

Handle handle = newSource();
while(configstring) {

addConfig(handle,configstring);
}
bool success = sourceConfig(handle)

No explicit C API is provided. Instead, C programs should call the FORTRAN API functions (with trailing
underscores) using the prototypes provided.

A.3.1 Create a new radiation decay problem.

Returns or sets an 8-byte buffer as the problem handle. Multiple independent problems can be created, and are
accessed via this handle.

static CRadSource ∗ CApi::newSource (void)
void rsnewsource (char ∗pHandle)

CALL RSNEWSOURCE(HANDLE)

A.3.2 Create and execute a new decay calculation problem.

This routine loads configuration information from a file. The filename may be either a character variable or string
literal. If the filename is the empty string, the library checks the RADSRC CONFIG environment variable for the
filename. If the file is successfully parsed, the problem is set up and the aged mixture is calculated. The function
returns true is successful, false if failed.
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static int CApi::loadConfig (CRadSource ∗pRadSource, const std::string &filename)
int rsloadconfig (char ∗pHandle, char ∗ptr, int len)

SUCCESS = RSLOADCONFIG(HANDLE,FILENAME)
SUCCESS = RSLOADCONFIG(HANDLE,’filename.txt’)
SUCCESS = RSLOADCONFIG(HANDLE,’’) for default location

A.3.3 Add an isotope to the input mixture.

Input parameters are atomic number, atomic mass, metastable state, and atomic fraction in percent.

static void CApi::addIsotope (CRadSource ∗pRadSource, int z, int a, int m, double perc)
void rsaddisotope (char ∗pHandle, const int &z, const int &a, const int &m, const double &perc)

CALL RSADDISOTOPE(HANDLE,Z,A,M,CONCENTRATION)

A.3.4 Get the number of discrete photons.

static int CApi::nLines (const CRadSource ∗pRadSource)
int rsnlines (const char ∗pHandle)

N = RSNLINES(HANDLE)

A.3.5 Get the first nmax (energy,intensity) discrete photon entries.

Parameters are a 2-by-NMAX double precision array, and NMAX, the maximum number of entries to return.
Entries are returned in sorted order.

static void CApi::getLines (CRadSource ∗pRadSource, double lines[ ][2], int nmax)
void rsgetlines (char ∗pHandle, double lines[ ][2], const int &nmax)

CALL RSGETLINES(HANDLE, LINES, NMAX)

A.3.6 Get a random photon energy in keV.

Sample a energy from the photon distribution using the random number generator provided. Note that the FOR-
TRAN and C interfaces have different function names for single and double precision random number functions.

static double CApi::getPhoton (const CRadSource ∗pRadSource, double(∗prng)(void))
static double CApi::getPhoton (const CRadSource ∗pRadSource, float(∗prng)(void))

double rsgetphoton (const char ∗pHandle, double(∗prng)(void))

double rsgtrphoton (const char ∗pHandle, float(∗prng)(void))

E = RSGETPHOTON(HANDLE, DRNG)
E = RSGTRPHOTON(HANDLE, FRNG)
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A.3.7 Get a random 4-vector E,px,py,pz in natural units (keV).

Sample an isotropic four-vector from the photon distribution using the random number generator provided. Note
that the FORTRAN and C interfaces have different function names for single and double precision random number
functions.

static void CApi::get4V (const CRadSource ∗pRadSource, double e[4], double(∗prng)(void))
static void CApi::get4V (const CRadSource ∗pRadSource, double e[4], float(∗prng)(void))

void rsget4v (const char ∗pHandle, double e[4], double(∗prng)(void))

void rsgtr4v (const char ∗pHandle, double e[4], float(∗prng)(void))

CALL RSGET4V(HANDLE, FOURV, DRNG)
CALL RSGTR4V(HANDLE, FOURV, FRNG)

A.3.8 Store a summary into a character variable.

Writes the input and output mixtures to a STL string, char array, or CHARACTER variable. Note that in the C
interface, the third parameter is the buffer length. The function returns the number of characters placed in the
buffer. The string is not nul-terminated.

static std::string CApi::getReport (const CRadSource ∗pRadSource)
int rsgetreport (const char ∗pHandle, char ∗ptr, int len)

LENGTH = RSGETREPORT(HANDLE,BUFFER)

A.3.9 Add to the growing string of configuration information.

Input may be either a CHARACTER variable or a string literal.

static void CApi::addConfig (CRadSource ∗pRadSource, const std::string &input)
void rsaddconfig (char ∗pHandle, char ∗ptr, int len)

CALL RSADDCONFIG(HANDLE,CONFIGSTRING)
CALL RSADDCONFIG(HANDLE,’U238 100’)

A.3.10 Parse the configuration information and perform the calculations.

The function parses the configuration information provided by addConfig(). If successful, it sets up the problem
and ages the mixture. It returns true if successful, false if failed.

static int CApi::sourceConfig (CRadSource ∗pRadSource)
bool rssourceconfig (char ∗pHandle)

SUCCESS = RSSOURCECONFIG(HANDLE)

A.3.11 Age the input mixture.

This function ages the mixture set by addIsotope. The parameter is the age in years. Returns true if successful,
false if failed.

static int CApi::mix (CRadSource ∗pRadSource, double age)
int rsmix (char ∗pHandle, const double &age)

SUCCESS = RSMIX(HANDLE,AGE)
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A.3.12 Sort the photon list.

Sorts the photon list by ascending energy or descending intensity. Parameter is 1 for energy and 2 for intensity.

static void CApi::sort (CRadSource ∗pRadSource, int field)
void rssort (char ∗pHandle, const int &field)

CALL RSSORT(HANDLE,1) for energy
CALL RSSORT(HANDLE,2) for intensity

A.4 Class CIsotope

The CIsotope class is the fundamental identifier for isotopes in the library. Nuclear isomers are distinguished by a
metastable state number. The CIsotope class also possesses convenient conversion functions to and from isotope
names.

A.4.1 Construct a CIsotope

CIsotope ()
CIsotope (int z, int a, int mm=0)

A.4.2 get Z, A, and metastable level

int getAtomicNumber (void) const
int getMassNumber (void) const

int getMetastableNumber (void) const

A.4.3 Obtain the canonical name of the isotope.

These methods create the canonical name of the isotope. Names are of the form Zzz-AAAmN, with a maximum
size of 9 characters. Invalid isotopes are named ”H-0”.

void toString (char ∗str) const
void toString (std::string &str) const

std::string toString () const

A.4.4 Parse variations of the isotope name.

These methods define the CIsotope by parsing a string. The ’-’ is optional but must not be whitespace. Capitaliza-
tion is also ignored.

CIsotope & fromString (const char ∗str)
CIsotope & fromString (const std::string &str)

A.4.5 Is this a valid isotope? (conversion from strings can fail)

If the CIsotope is not initialized or fromString fails, this method will return true.

bool isValid (void) const
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A.5 Class CDatabaseManager

This class creates isotope databases from database-specific routines and classes. CIsotopeDatabase and CDatabase-
Manager provide a uniform interface for accessing isotope information regardless of the source, storage, or for-
matting of the underlying data. The CDatabaseManager class is a singleton.

A.5.1 Enumerations

enum DatabaseType { LEGACY, ENSDF, ENSDF ERRATA }

A.5.2 Typedef

typedef std::pair< int, std::string > DatabaseIdentifier

A.5.3 Obtain a pointer to the library’s CDatabaseManager.

A single CDatabaseManager object manages all the databases in the library. This function will return a pointer
to it.

static CDatabaseManager ∗ getDatabaseManager (void)

A.5.4 Obtain a pointer to a particular isotope database.

This function loads an isotope database and returns a pointer to it if successful. This first parameter is an enum
of type DatabaseType. Currently only LEGACY, the GAMGEN database format, is supported. This parameter
selects which database parser is to be used. The second parameter is an identifier to a specific database. The
meaning of this parameter is defined by the selected parser, but is typically one or more filenames. Databases with
the same parser and identifier are unique and need only be loaded once.

A.6 Class CIsotopeDatabase

The CIsotopeDatabase class maintains a mapping from CIsotope to CIsotopeData, and provides methods and
iterators to access isotope data in the mapping.

A.6.1 Typedefs

typedef std::map< CIsotope, CIsotopeData ∗ > IsotopeList
typedef std::map< CIsotope, CIsotopeData ∗ >::const iterator IsotopeListIterator

A.6.2 Get the library’s isotope database manager object.

static CIsotopeDatabase ∗ getIsotopeDatabase (int type, std::string info=””)

A.6.3 Obtain information on an isotope.

Returns a pointer to a CIsotopeData object if the database contains an entry for the isotope, or 0 if not.

const CIsotopeData ∗ getIsotopeData (const CIsotope &iso) const

A.6.4 Check if an isotope is present in the database.

bool hasIsotopeData (const CIsotope &iso) const

26



A.6.5 Iterators for accessing isotope data.

These methods return iterators to access isotope data for each isotope in the database.

IsotopeListIterator isotopesBegin (void) const
IsotopeListIterator isotopesEnd (void) const

A.6.6 Get the number of isotopes in database.

int getNIsotopes (void) const

A.7 Class CIsotopeData

The CIsotopeData class encaspulates the basic isotope constants and a listing of possible decays. Decay entries
are distinct even if they ultimately decay to the same daughter isotope. For example, multiple beta decay branches
to different nuclear states, which then immediately decay, can each have an entry in the database with unique
associated photon emissions.

A.7.1 Typedef

typedef std::vector< CDecayMode >::const iterator DecayIterator

A.7.2 Get the decay rate of a particular branch.

Units are disintegrations per second. The parameter is either a branch number starting with zero or DecayIterator.
Units are in disintegrations per second.

double getDecayRate (int branch) const
double getDecayRate (const DecayIterator &it) const

A.7.3 Get the decay rate of the isotope

Units are disintegrations per second.

double getDecayRate (void) const

A.7.4 Decay branch iterators

DecayIterator decaysBegin (void) const
DecayIterator decaysEnd (void) const

A.7.5 Get the number of decay branches.

int getNDecayModes (void) const

A.7.6 Get the isotope which this entry describes.

const CIsotope & getIsotope (void) const

A.7.7 Get the canonical name of this isotope.

const char ∗ getName (void) const
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A.7.8 Get the standard average atomic mass for the isotope.

Units are in grams.

double getAtomicMass (void) const

A.7.9 Get the halflife of the isotope.

Units are in seconds.

double getHalflife (void) const

A.8 Class CDecayMode

The CDecayMode class encapsulates the information about a particular decay. This includes the branch fraction,
the discrete photon lines, and the average bremsstrahlung spectrum.

A.8.1 Enumerations

enum DecayType {UNSPECIFIED, ALPHA, BETA GENERIC, BETA MINUS, BETA PLUS, ELEC-
TRON CAPTURE, INTERNAL TRANSITION, ALPHANEUTRON, BETANEUTRON }

A.8.2 Typedefs

typedef std::vector< CPhoton >::const iterator PhotonIterator
typedef std::vector< double >::const iterator BremBoundaryIterator

typedef std::vector< double >::const iterator BremIntensityIterator

A.8.3 Get the decay type.

This function returns the type of decay. The usefulness of this value is entirely dependent upon the quality of the
underlying source of the decay information and the routine that parses it.

int getDecayType (void) const

A.8.4 Get the daughter isotope of this particular decay.

The method returns the daughter isotope of the decay, which may be a specific isomer.

const CIsotope & getDaughter (void) const

A.8.5 Get the branch fraction of this particular decay.

This method returns the branching ratio of this particular decay.

double getBranchFraction (void) const

A.8.6 Get number of photons produced in decay.

int getNPhotons (void) const
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A.8.7 Obtain iterators for the discrete photons produced by this decay.

PhotonIterator beginPhotons (void) const
PhotonIterator endPhotons (void) const

A.8.8 get number of brem bins

int getNBremBins (void) const

A.8.9 Obtain iterators for the bremsstrahlung energy bin boundaries.

BremBoundaryIterator beginBremBoundaries (void) const
BremBoundaryIterator endBremBoundaries (void) const

A.8.10 Obtain iterators for the bremsstrahlung bin intensities.

BremIntensityIterator beginBremIntensities (void) const
BremIntensityIterator endBremIntensitities (void) const

A.9 Class CPhoton

The CPhoton class is a database entry for a photon. It contains the photon energy, the probability of emission, and
relative uncertainty in that probability.

A.9.1 Get the photon energy.

Units are keV.

double getEnergy (void) const

A.9.2 Get the emission probability.

Probability is per decay.

double getFraction (void) const

A.9.3 Get the relative error in the emission probability.

Error is ∆F
F .

double getError (void) const

A.10 Class CDecayComputer

The CDecayComputer class stores the input and aged mixtures, and retains the time dependence of the aged
concentrations in a mapping of CIsotope to CBatemanSolution.

A.10.1 Convert input to canonical units.

At this time, the only valid unit selection is ATOM FRACTION. This also the default selection for the object and
this call is optional.

void normalizeInputUnits (void)
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A.10.2 Append a radioisotope to the input mixture list.

The parameters are a fully constructed CIsotope class and the quantity of that isotope in unspecified units. The
units will later be defined with a call to normalizeInputUnits.

void addInputItem (const CIsotope &iso, double amount)

A.10.3 Reset the object.

This method clears all data and settings in the object, except the database selection.

void clear ()

A.10.4 Compute the isotope concetrations at a particular age.

This method causes the decay chain to be traversed and the time dependence of each isotope in the chain is
computed. These are evaluated at the specified age to produce the aged mixture. The parameter is the age in years.

CIsotopeMixture & ageMixture (double age)

A.10.5 Get the detailed solution.

Returns a mapping of CIsotope to CBatemanSolution, which contains the full time dependence and parentage of
every isotope in the decay chain.

const std::map< CIsotope, CBatemanSolution > & getFullSolution (void) const

A.10.6 Get the detailed solution for an Isotope.

Returns a CBatemanSolution object, which contains the full time dependence and of the isotope.

const CBatemanSolution ∗ getSolution (const CIsotope &isotope) const

A.10.7 Get mixture at a particular time.

Returns a mapping of CIsotope to double, giving the concentration of each isotope in the aged mixture. The units
are in atomic fraction.

const CIsotopeMixture & getAgedMixture (void) const

A.10.8 Get the initial mixture.

Returns a mapping of CIsotope to double, giving the concentration of each isotope in the initial mixture. The units
are in atomic fraction.

const CIsotopeMixture & getInputMixture (void) const

A.10.9 Look up some data in the current database.

Shortcut to obtain an isotope data entry from the database currently being used by this CDecayComputer object.

const CIsotopeData ∗ getIsotopeData (const CIsotope &isotope) const
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A.10.10 Get the current isotope database.

Get the current isotope database being used by this CDecayComputer object.

const CIsotopeDatabase ∗ getIsotopeDatabase (void) const

A.10.11 Set the database to be used.

Set the isotope database to be used for future calculations. This action resets the object as indicated in the method
clear.

void initialize (const CIsotopeDatabase ∗pisotopedb)

A.11 Class CBatemanSolution

The CBatemanSolution stores the coefficients and decay constants for each term in the solution for a particular
isotope that may appear in the aged mixture. It also retains a listing (as an STL set) of ultimate parent radioisotopes
in the initial mixture contributing the isotope.

A.11.1 Get the isotope for which this object is a solution.

const CIsotope & forIsotope (void) const

A.11.2 Get a list of initial isotope parents.

Get a list (as an STL set) of radioisotopes in the initial mixture that eventually decayed into this isotope.

const std::set< CIsotope > & getChainParents (void) const

A.12 Class CIsotopeMixture

This class is a mapping from CIsotope to double, providing the concentrations of all the isotopes in the list.

A.12.1 Compute the average atomic mass.

Computes the average atomic mass of the mixture, thus giving grams/mol.

double computeAverageMass (void) const

A.12.2 Set the isotope database

Sets the isotope database to be used for information about isotopes in this mixture.

void setDatabase (const CIsotopeDatabase ∗)

A.13 Class CPhotonComputer

The CPhotonComputer class stores lists of photon energy and intensity and maintains the association between
a photon and its emitting isotope(s) in an aged mixture. A CPhotonComputer is permanently associated with a
CDecayComputer object, and its associated isotope database. CPhotonComputer provides an iterator class to
access the sorted photon list.
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A.13.1 Enumerations

enum { ENERGY = 0, INTENSITY = 1 }
enum { PERMOLE, PERGRAM }

enum BinSubject { BIN BREM, BIN GAMMA }

A.13.2 Typedefs

typedef std::map< CIsotope, double > IsotopeMixture

A.13.3 Create and sort the list of emitted discrete photons.

Computes the discrete lines emitted by the decay of elements present in the aged mixture in the associated CDe-
cayComputer object. This function may be called again to change the sort order without repeating the calculation.
The parameter is one of the enums ENERGY (ascending energy) or INTENSITY (descending intensity).

void computeGammas (int sortparam=ENERGY)

A.13.4 Get iterators for the lists of photons

These methods return begin and end iterators for the complete list of photons, and the subset list of photons,
respectively.

CPhotonIterator beginGammas (void) const
CPhotonIterator endGammas (void) const

CPhotonIterator beginSelectedGammas (void) const

CPhotonIterator endSelectedGammas (void) const

A.13.5 Get the number of discrete lines in the list of photons.

These methods return the size of the complete list of discrete photons, and the size of the subset list, respectively.

int getNGammas (void) const
int getNSelected (void) const

A.13.6 Set the bin boundaries.

These methods set the bin boundaries of the bremsstrahlung and non-selected (binned) photon lines. The first
parameter is one of the enums BIN BREM or BIN GAMMA. The second parameter may be either an STL vector
of doubles listing the bin boundary energies, or an array of doubles. In the later case, the length of the array must
be passed as the third argument.

void setBinning (BinSubject what, const std::vector< double > &)
void setBinning (BinSubject what, const double ∗, int)
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A.13.7 Select a subset of the discrete lines and bin the rest.

These methods subset the list of photons according to a list of desired energies. Photons that are not in the list of
desired energies are combined into a distribution of binned intensities. Energies may be provided as either an STL
vector of doubles, or an array of doubles.

Care must be taken to ensure that the energies in the list and the energies in the isotope database are identical
in the machine’s native representation.

void selectGammas (const std::vector< double > &v)
void selectGammas (const double ∗lines=0, int n=0)

A.13.8 Get the bremsstrahlung binned data.

Returns a CBinnedData object which contains the bin boundaries and bin intensities of the bremsstrahlung distri-
bution.

const CBinnedData & getBrem (void) const

A.13.9 Get the binned lines data.

Returns a CBinnedData object which contains the bin boundaries and bin intensities of the non-selected disrete
lines.

const CBinnedData & getBinnedGammas (void) const

A.13.10 Sample the photon distributions.

These methods sample the combined discrete and bremsstrahlung intensity distribution. The first two methods
return a photon energy in keV, while the second two methods fill an array of energy and momentum values in
natural units (keV). In the latter case, the first parameter is an array of four doubles {E, px, py, pz}. All four
methods require a pointer to a function returning either a single- or double- precision random number in the range
[0,1).

double getPhoton (double(∗rng)(void)) const

double getPhoton (float(∗rng)(void)) const

void getFourVector (double e[4], double(∗rng)(void)) const

void getFourVector (double e[4], float(∗rng)(void)) const

A.14 Class CPhotonIterator

The CPhotonIterator class combines information from CPhotonComputer and CDecayComputer to provide
complete information about emitted photon lines. CPhotonIterator follows const forward iterator semantics.
CPhotonIterator dereferences to a const CGammaEntry object.

N.B. References the CGammaEntry are valid only while while the CPhotonIterator points to it. If the
application requires the CGammaEntry to persist then a copy should be made.

A.15 Class CGammaEntry

The CGammaEntry class encapsulates all the information known about a discrete photon line, including its origins
in the decay chain.
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A.15.1 Typedefs

typedef std::set< std::pair< CIsotope, CIsotope > > DecayList
typedef std::set< CIsotope > ParentList

A.15.2 Get the isotope in the initial mixture that produces this line.

This method returns a list (as an STL set) of all the isotopes in the initial mixture that decayed into an isotope that
subsequently emitted this line.

const ParentList & getChainParentIsotopes (void) const

A.15.3 List the decays that produce a line.

This method returns a list (as an STL set of isotope pairs) of parent and daughter isotopes that produce this line.

const DecayList & getDecays (void) const

A.15.4 List the isotopes that decacyed and emitted a line.

This method returns a list (as an STL set) of all the isotopes that emit this line in the process of, or as a result of,
decaying.

const ParentList & getParentIsotopes (void) const

A.15.5 Get a formatted list decays and ultimate parent isotopes of a line.

This method returns an STL string containing a list of isotopes in the initial mixture that eventually produce this
discrete line. These isotopes are printed in square brackets []. It then lists the specific decays, parent to daughter,
separated by arrows, ->.

std::string getParentDescription (void) const

A.15.6 Get the photon energy.

This method returns the photon energy in keV.

double getEnergy (void) const

A.15.7 Get the photon intensity

This method returns the photon intensity in the current units. (default: photons/sec/gram of input mixture) High-
PrecisionType is defined in porting.h at compile time by the user.

HighPrecisionType getIntensity (void) const

A.16 Class CBinnedData

CBinnedData is essentially a structure describing binned data. Its members are STL vectors of doubles or High-
PrecisionType containing the bin energy boundaries, the bin intensities, the cumulative intensity and total intensity.
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A.16.1 Members

std::vector< double > m energy
std::vector< HighPrecisionType > m intensity

std::vector< HighPrecisionType > m cumulative

HighPrecisionType m sum
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